

80 Years of Reinventing the Region

Weather Proof Collaborative Stormwater Solutions

Tuesday, April 8, 2014

@metroplanners #weatherproof

JOSH ELLIS METROPOLITAN PLANNING COUNCIL

LAURENS VAN DER TAK CH2M HILL

Presented by:

CH2MHILL.

Presentation Outline

- Examples of Collaborative Regional Stormwater Programs for MS4 Permits and Climate Resilience
- Green Infrastructure Programs at City/County Scale:
 - Onondaga County NY
 - Lancaster PA
- Tools:
 - Site Evaluation Tools Business Case Analysis
 - Triple Bottom Line Analysis
 - Innovative Financing:
 - Impervious Area Based Stormwater Utility Fees
 - Credits/Rebates
 - Public Private Partnerships

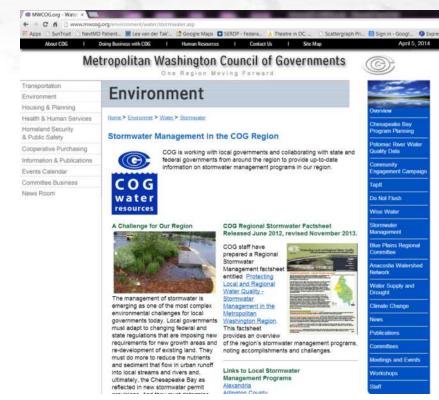
Collaborative Regional Stormwater Program Examples: HR Storm

(HRstorm.org and askHRGreen.org)

- Stormwater education program of the Hampton Roads Planning District Commission (HRPDC), in Tidewater VA
- Coalition of local government staff members from 16 cities/counties to share ideas and pool resources for targeted educational program efforts about stormwater management
- Started by HRPDC's Regional Stormwater Management Committee in 1992 after NPDES Phase 1 stormwater permits.

Collaborative Regional Stormwater Program Examples: HR Storm

(HRstorm.org and askHRGreen.org)


- HRStorm replaced in 2011 with broader program (stormwater, FOG, recycling, water awareness), and rebranded as askHRgreen.org:
 - Materials (brochures)
 - Tools
 - Media kits
 - Tips
- Surveys and annual reports (3 online surveys – 2010-2013):
 - Gauge the region's environmental literacy
 - Identify target audiences for specific behaviors
 - Establish a baseline for evaluating campaign progress

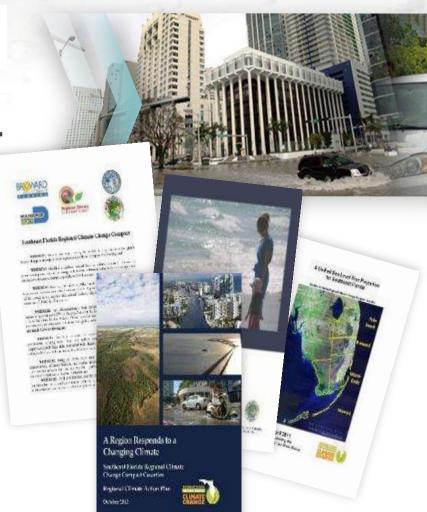
Program Examples: Washington DC Region (COG) and Local (TWG)

- MWCOG (http://www.mwcog.org/environ ment/water/stormwater.asp)
 - MWCOG's water resources committee facilitates regular meetings on regional regulatory and stormwater management issues for DC, MD, VA localities
 - Provides a clearinghouse for resources, though does not produce educational materials
- Washington DC' Stormwater Technical Working Group (interagency collaboration on policy and regulations):
 - MS4 reporting
 - Guidance and design criteria
 - Updated regulations

Collaborative Regional Stormwater Program Examples: Southeast Florida Climate Compact http://southeastfloridaclimatecompact.org/

Regional agreement of 4 counties to address:

- Sea level rise
- Storm surge
- Extreme precipitation



Collaborative Regional Stormwater Program Examples: Southeast Florida Climate Compact http://southeastfloridaclimatecompact.org/

Regional agreement of 4 counties to address:

- Sea level rise
- Storm surge
- Extreme precipitation

Studies

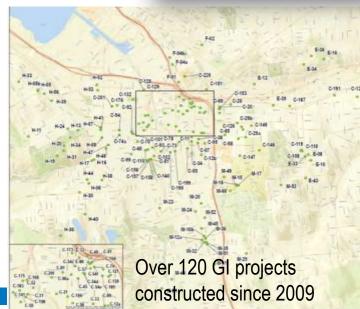
- Annual Summit
- Clearinghouse for news, events, documents

Presentation Outline

- **Examples of Collaborative Regional Stormwater Programs for MS4 Permits and Climate Resilience**
- Green Infrastructure Programs at City/County Scale:
 - Onondaga County NY
 - Lancaster PA
- Tools:
 - Site Evaluation Tools Business Case Analysis
 - Triple Bottom Line Analysis
 - Innovative Financing:
 - Impervious Area Based Stormwater Utility Fees
 - Credits/Rebates
 - Public Private Partnerships

CH2MHILL.

Balanced Approach to Urban Catchment Management: Gray + Green

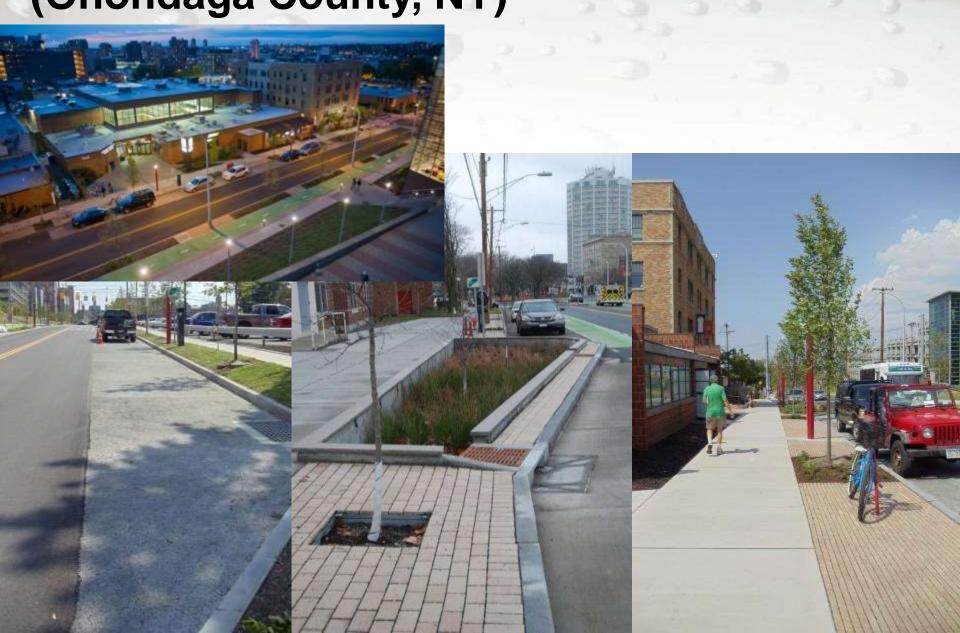


Onondaga County, NY's Save the Rain Green Combined Sewer Overflow Program

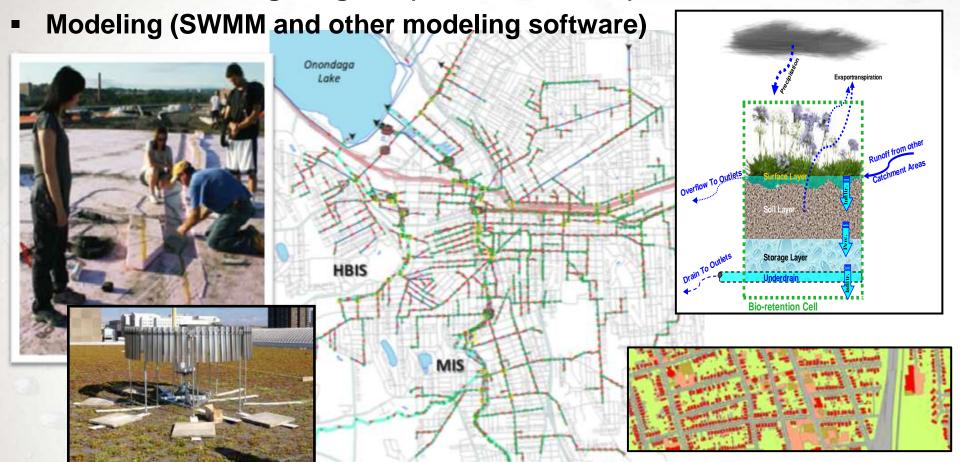
WATER PRIZE

- Led a rapid planning, analysis, and negotiation process to amend the federal Consent Judgment to a balanced green-grey approach
- Formed close partnership between County and City of Syracuse agencies to enable GI implementation
- Completed *Project 50* in 2011 over 50 distinct GI projects in a single year
- Local, regional, and national recognition for the client
- Signature green projects: Streets, Parks, Libraries, Post Offices, the Zoo, and:
 - War Memorial Cistern Rainwater Reuse System
 - 1st U.S. Hockey Team to Play on "Green Ice"
 - OnCenter Convention Center Green Roof
 - 2nd Largest Green Roof in NY (66,000 SF)
 - Harbor Brook CSO Wetland Treatment System
 - 1st CSO Treatment Wetland in NY
 - Connective Corridor USGBC Leadership Award

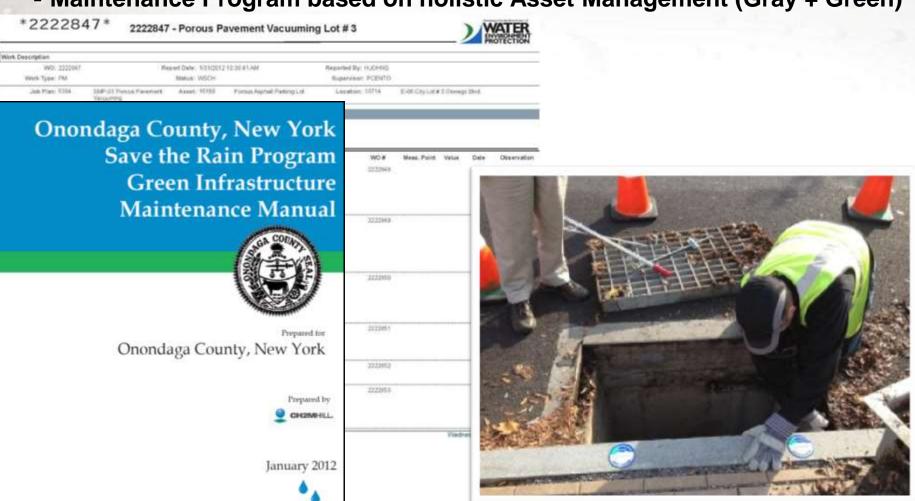
Align Regulatory and Community Goals: Water Quantity and Quality Objectives with Quality of Life Impacts


Provide incentives for retrofitting impervious area on private property

Understand Infrastructure Drivers, as they can and will Influence Funding


Connective Corridor Project (Onondaga County, NY)

Develop Quality Verification Systems to Track Performance and Create Regulatory Transparency


Parcel level mapping of impervious surfaces, and retrofits

Robust Monitoring Program (Micro and Macro)

Develop Quality Verification Systems to Track Performance and Create Regulatory Transparency

Maintenance Program based on holistic Asset Management (Gray + Green)

Save the Rain

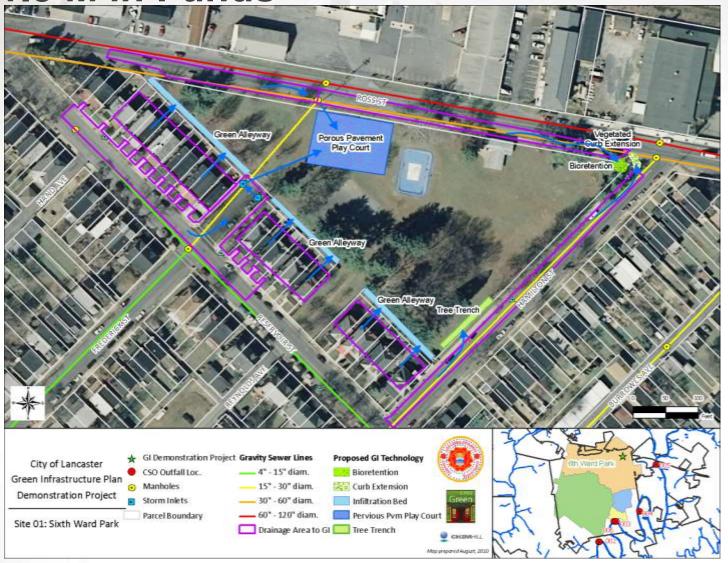
Lancaster, PA Green Infrastructure Program

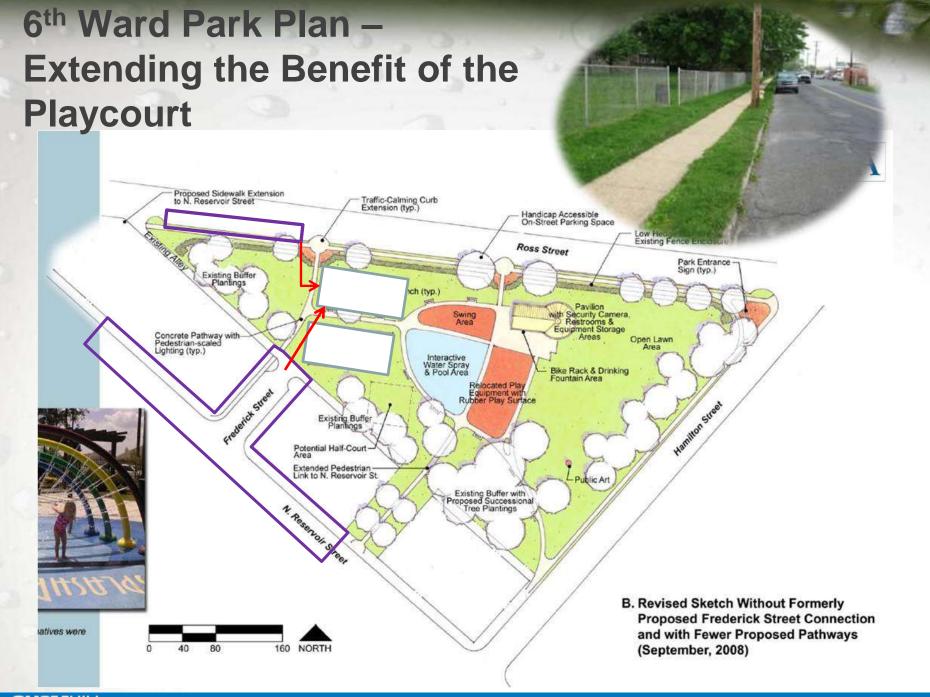
- \$75M GI Implementation Program
- Chesapeake Bay Watershed
- Partnering with US EPA R3 to pilot an integrated municipal planning approach to reduce CSO/MS4 discharges and nutrients
- Integrated Water Quality,
 Transportation and Community
 Enhancements
- Public Private partnership improves local businesses and adds clean water Infrastructure at less cost

Status	Number of Projects	Impervious Area Managed (sq. ft.)	Impervious Area Managed (acres)	Annual Runoff Capture (Gal/yr)
Constructed / Under Construction	24	611,400	14	12,117,000
In Design for Construction	21	636,600	15	11,240,000
Conceptual Designs (non-PV/GGP)	28	730,400	17	9,026,000
Conceptual Designs (PENNVEST)	31	584,300	13	10,432,000
Growing Greener Plus Concepts	2	29,400	0.7	588,000
In Project Planning	43	-	-	-
Total	149	2,592,100	60	43,403,000

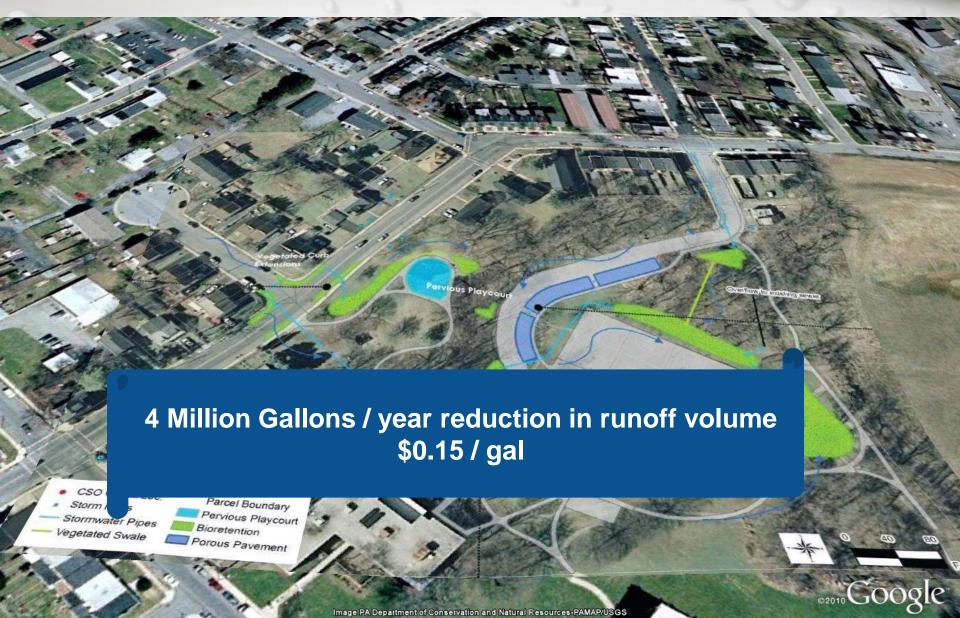
CH2MHILL. 20

Lancaster Green Infrastructure Program




Rooftops

Project Concepts in GI Plan Document Managed Impervious Areas and Secured \$11.5 M in Funds

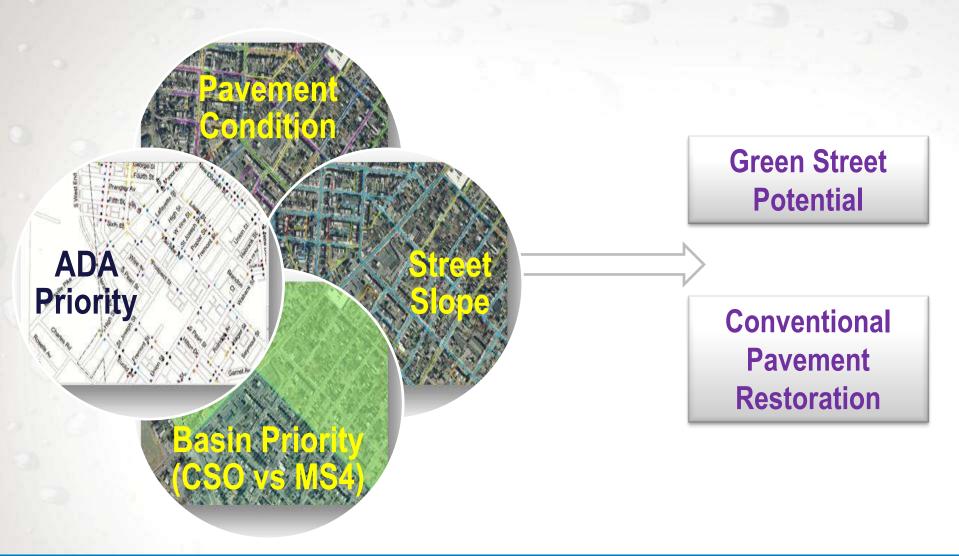


Brandon Park

© 2011 Google

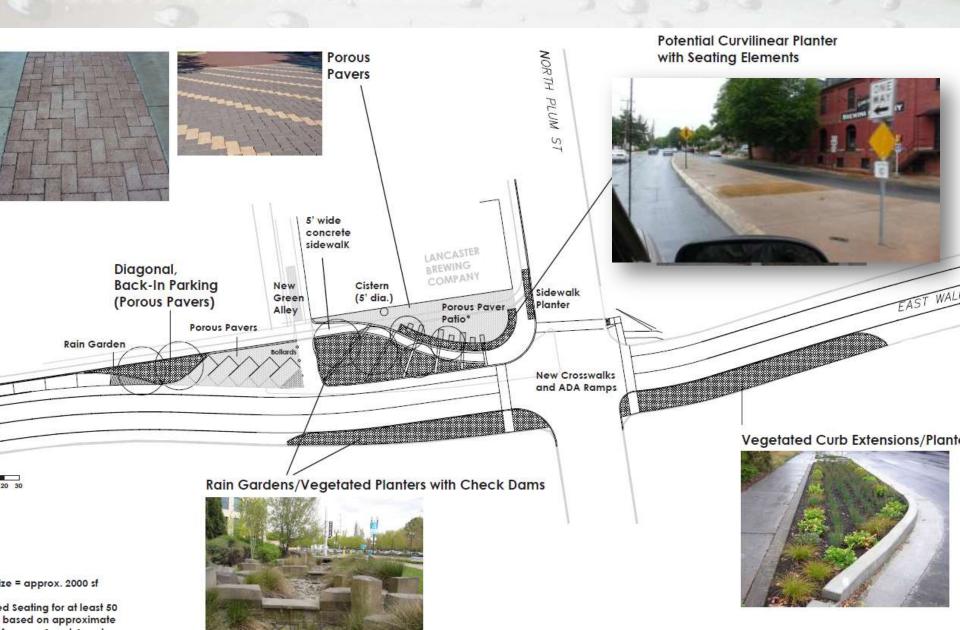
Alley 148 Greened for 10% Additional Cost

Before (July 2011) ~\$20.30/SF



Component	Conventional Unit Cost (\$/square foot)	Green Unit Costs (\$/SF)
Pavement Removal/Excavation	\$1.08	\$1.08
Crushed Stone w/ geotextile	\$0.35	\$1.39
Pipes/Cleanouts/etc.		\$0.82
8-inch reinforced concrete	\$18.89	\$18.89
Permeable Pavers		\$19.44
Total Weighted Average	\$20.32	\$22.37
Additional Green Cost (\$/SF)		\$2.05
Additional Green Cost (%)		10%

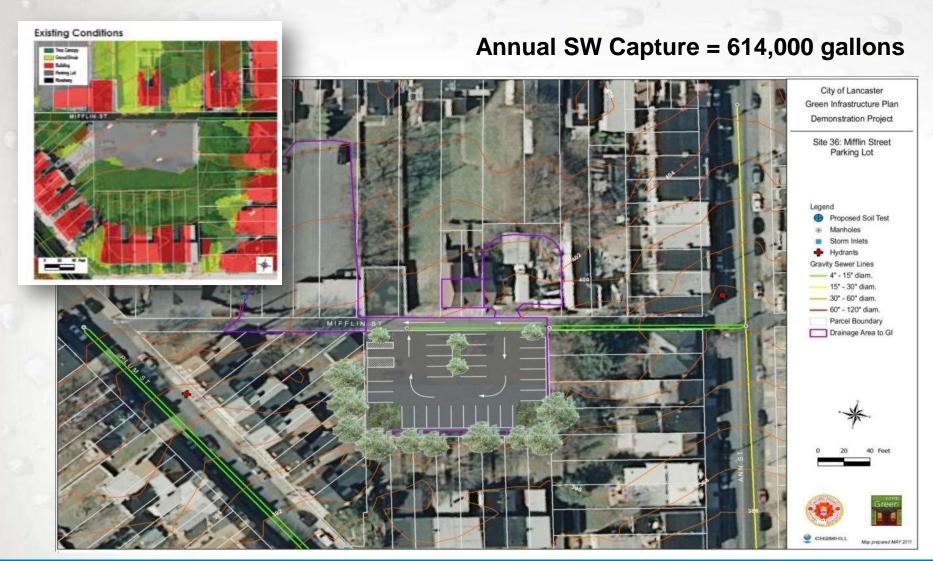
Conventional reconstruction ~\$20.30/SF (8-inch reinforced concrete)


Green alley retrofit ~\$22.40/SF (permeable pavers with infiltration trench)

Composite prioritization criteria for Pavement Assessment, ADA Ramps, and GI

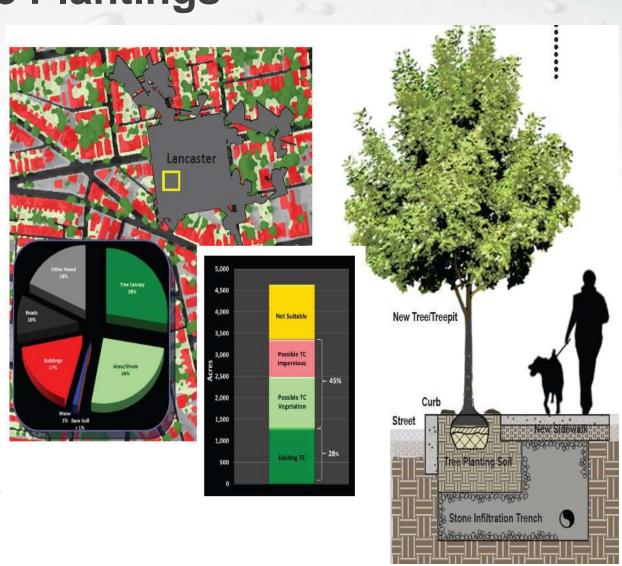
CH2MHILL

Using traffic safety and transportation funding to reduce accidents and runoff



Public Outreach/Education

Permeable Paver System Examples



Mifflin St. public Parking lot emphasizes safety and tree canopy

Urban Tree Canopy Assessment & Enhanced Tree Plantings

- Funded by PA-DCNR Bureau of Forestry
- GIS analysis of existing tree canopy by Univ. of Vermont
- Prioritize potential planting areas and locations for canopy preservation
- Model for other urban Chesapeake Bay watershed communities
- Follow-Up Tree Inventory

Presentation Outline

- **Examples of Collaborative Regional Stormwater Programs for MS4 Permits and Climate Resilience**
- **Green Infrastructure Programs at City/County Scale:**
 - Onondaga County NY
 - Lancaster PA
- Tools:
 - Site Evaluation Tools Business Case Analysis
 - Triple Bottom Line Analysis
 - Innovative Financing:
 - Impervious Area Based Stormwater Utility Fees
 - Credits/Rebates
 - Public Private Partnerships

Develop Cost Effective Business Case Model to Facilitate Planning and Decision Making

User Inputs Shaded in Green															
Project Name: Project Location: Priority Level:	£50.008						Step One]							
Robal legats: serage Annual Rabial (ray) unding Limit for Gi (Mgally runoff induction)	29.34										2)		57		
		Step Two								Step Three		io.	Step Four	THESE COLUMNS FOR CISTERS	
Carlana I	Colona 2	(depen)	Calman	Oalsmolf	Estanol	Culture 7	College 9	Calencii	Column No.	delimett	Celena S	Oriena O	Options 14	(lahmi ti	Calumo H.
Proposed Green Technology	Typical Gi Unit Cost	Unit	Proposed Gl Quantity	Parcel Controlled Impervious Orainage Acea (SF)	Anneal Penoff Yolume (galfyr)	Capture Volume (in.) [must be between 0.125 and 2 inches]	Estimated Annual Hunoff Capture (%)	Estimated Aroual Fluncif Capture (gal)	Potential Funding Limit based on Capture	Required GI Storage for Drainage Area (CF)	Potential Funding Limit Based on Typical Unit GI Costs	Total Average #Igsiligt Cost Bassed on Typical Unit Gi Costs	Recommend of Maximum Funding Limit (Leaser of Capture and Unit Cost Funding Limits)	Cistors Capture Volume (in.)	Cisteen Volume Required for 1 inch Capture (gal)
orous Pavement	\$ 12.00	9F				109	90%				6 3		10	N/A	lan
			Total:	0				0	\$0	0	\$0	į,	\$0		

Green Infrastructure Measure	Description	Unit	Unit Cost		
Rain Gurden	Intended to collect rancel volume in a depression that ponds solume and may or may not include overflow piping	8F	1	- 1	
Dio-Retention	Similar to a rain garden, and includes subsurface storage and underground piping, and an overflow system of some type	sr			
Underground infiltration System	Subsurface promivates storage system consisting of clean gravel, modular storage (special as acti- manifors, vol.), and deep enough to previous as below that depth, stended to store still runoll volume with infill rulos about over time (commensurate with soil infill rulos necessary typically manages runoli from as are at least 6. Hang St. com area.	SF		25	
Green Floor	Intended to be able to collect 10 insh of runoff before carefilor, or spitem will be proceed by DCDWEP accordingly (unit cost funding may be legiest it Green Poor is only Glioption, available on property)	sr		2	
Porout Pavement	All types, including adequate subbase to store nunoil solumes in accordance with site requirements, typically designed to manage nunoil from adjacent impersions area (someonicinal payement, nool alexas, etc.)	1F	2	8	
Tree	Caliper size must be 2 inches or greater	E	\$	400	
Tree Platfunch	Must white characteristics of Underground individue System	SF	:	11	
Cistors Capture & Fielease	The "Funding Limit for GF (\$fgal) to pro-rated at 150% when using fivid type of system.		1	90	
Cistem Reuse	The "Estimated Annual Pluntoff Capture" is pro- rated at 75% when using this type of system		1	90	
Added Green Space	Also known as "removal of impervious area," impervious area and subhase (if ang) must be completely removed, subgrade adequately prepared, and subside social installed.			9	
DryVet	These are evaluated on a case-by-case basis, as they come in many shapes and sizes depending on the application, espectation is that they perform similar to Underground infiltration Systems, contact OCDAPP so continuite Costs.	Bal		- 1	

Green Roof U	nit Co	ets
Roaf Priority	Cos	per
Low	5	4
Medium	5	8
High	5	12
Priority	:00	on:

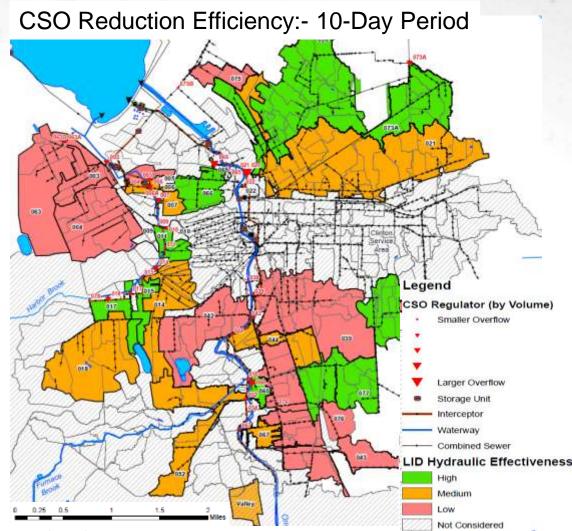
		Gt Cons	truotion #/gal/gr:				
	Step Sie						
	Cost Summary Table						
	Requested Funding (Dased on Application)	Maximum Funding (Blased on Calculator)	Maximum Funding (Lesser of Application versus Calculator)				
GI Construction		\$0.00	\$6.00				
GI Engineering		\$0.00	\$000				
Field Testing		\$0.00	\$0.00				
Final Maxim	um Eundina /	MTE Actually	\$0.00				

Notes

- This saledator has been revised to reflect the most recent GIF program modifications (Asse 2013). It should not be used to calculate assist values for previously reviewed projects.
- This calculator is solely for the purposes of Save the Plain GIF application funding determinations, and specifically not for design stong, or other GI purposes.
- Save the Rain is not responsible for potential calculator errors, and all values are subject to review, approval, and vertication by Oncoders Counts.
- If actual GL construction cost is expected or known to be less than the Maximum Funding (based on calculator), this value should be appeared as conducte.

Triple Bottom Line Analysis of Adaptation Strategies Promotes Mitigation and Other Co-Benefits (Economic, Social, Environmental)

DC Water GI Challenge Award Submissions


CH2IMHILL.

Modeling and Optimization Tools Can Target GI Retrofits for Maximum CSO Reduction

EfficiencyFactors affecting LID impact

Baseline condition overflow

- Degree / frequency of surcharge
- Regulator hydraulics
- Hydraulic interactivity from adjacent basins

Efficiency = CSO volume Reduced ÷ Inflow Volume Reduced

Stormwater user fees are an equitable mechanism for funding stormwater programs

- Regulatory compliance requirements
- Stormwater management needs
- Economic development initiatives

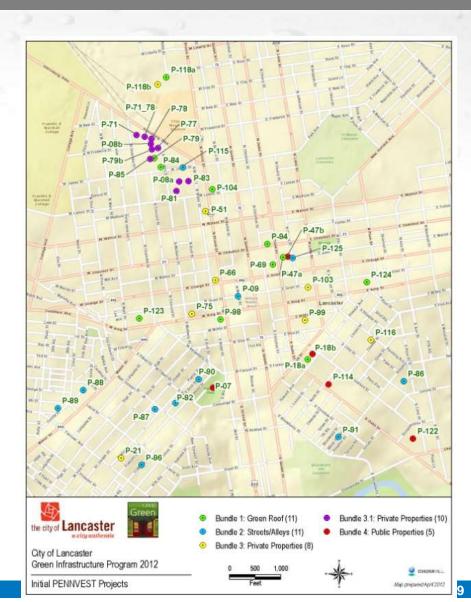
To address these issues, a *reliable*, *dedicated* funding mechanism is needed

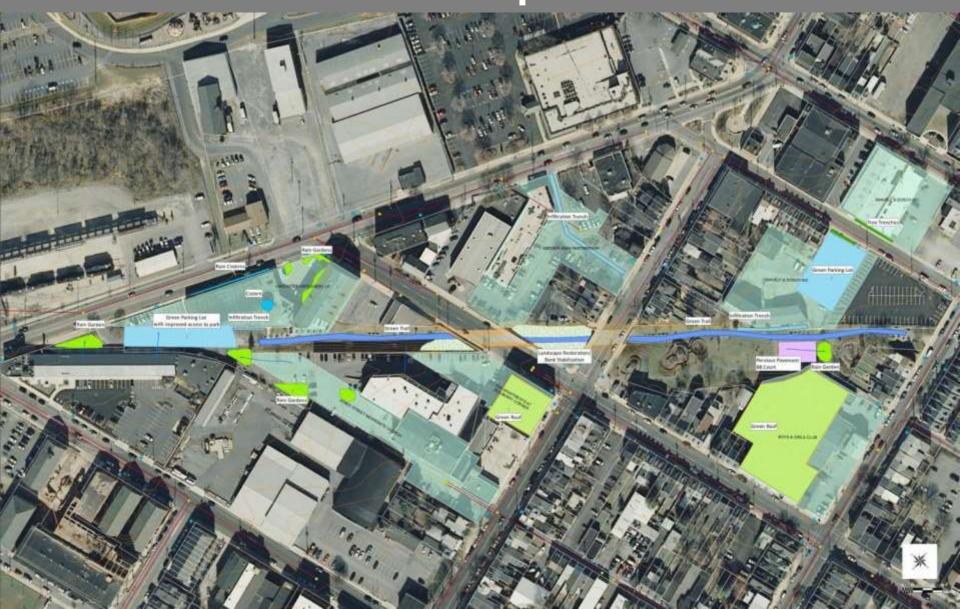
Leveraging Grants and SRF Loans to **Incentivize Green Infrastructure Investments**

Incentive Programs Encourage Installation of Stormwater Projects on Private Property, Helping with MS4 and CSO Permit Requirements

Incentives come in 2 forms:

- Rebates or Grants 1 time assistance with construction cost:
 - For example up to \$1,200 for residences, RainScapes Rewards Rebates Program \$5,000 for businesses to install GI
- Credits a percentage reduction in the annual impervious area fee:
 - For example up to 50% for businesses treating impervious area with green infrastructure projects




CH2MHILL

Innovative Financing: Using the SRF to create Public-Private Partnerships

- \$7 M SRF Loan
- 2 Programs
 - Green Roofs
 - Other
- Private Landowners provide
 - 10% of construction costs
- City is also implementing a Green Alley Program that residents pay \$500 into repaying costs

Innovative Financing: Using the SRF to create Public-Private Partnerships

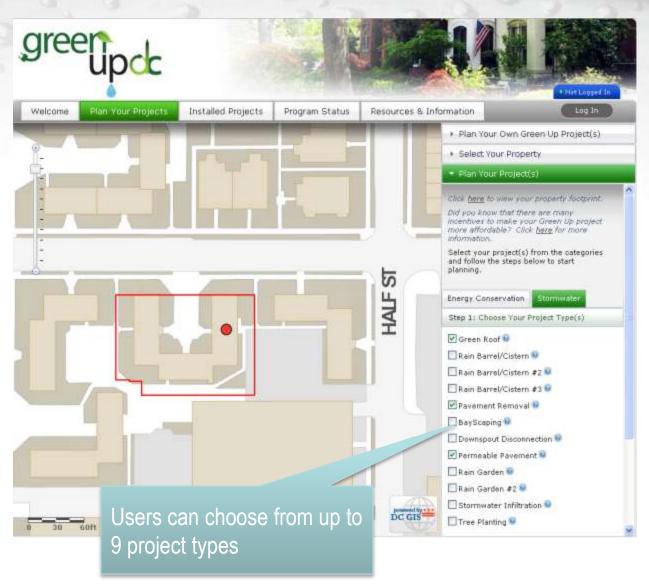
Onondaga County NY, Green Improvement Fund - Lessons Learned

Demand Exists!

- \$ 6 M in awards
- 121 applications submitted for grant funding to-date
- 40 Grant awarded project completed
- 20 Projects currently under construction
- 40 Projects under contract for 2014 Construction Season
- Transparency of Process is Paramount
- It's OK to modify program-Must adapt as program evolves
 - A project in 2013 will not necessarily receive the same grant funding as a project in 2010
 - Funding Caps Promote Bad Behavior
 - Tiered Approach allows for both small and large scale projects
 - Small scale projects contribute to community support
 - Business case ensures value to City and County
 - A thorough review process will ensure a good outcome

CH2MHILL. 41

Green Up DC web site makes it easy for property owners to make decisions about green projects


Projects

Projects

runoff calculated with rainfall-runoff method

from center for watershed protection

- Pre-loaded impervious area data
- 9 project types
- Context-sensitive information
- Runoff before treatment is calculated from preloaded impervious area information

CH2MHILL.

Conclusions and Lessons Learned

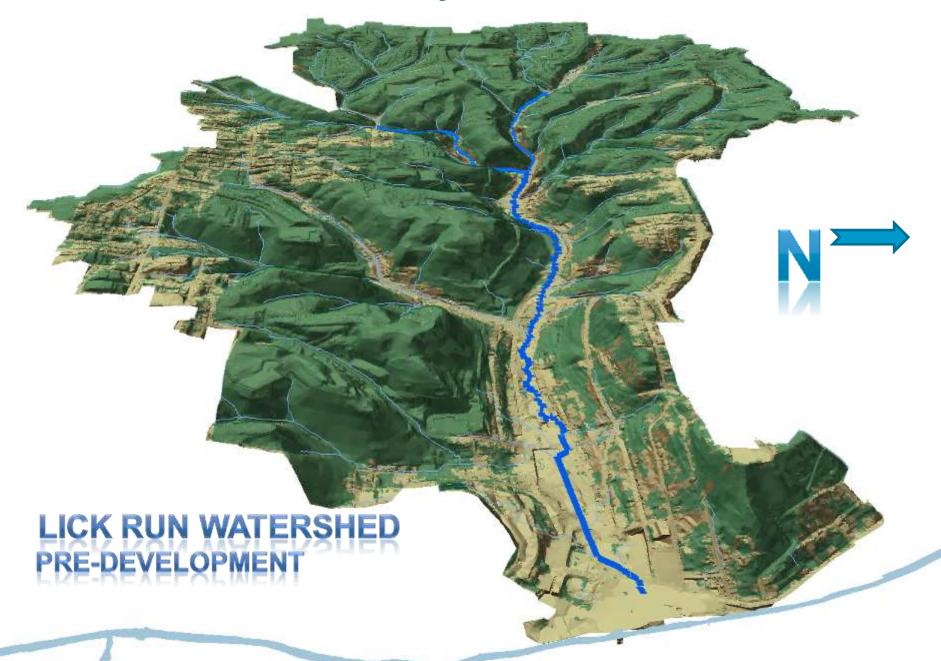
- Regional collaboration increases effectiveness of stormwater programs, particularly for education and financing
- Regional collaboration successes tied to strong leadership and clear goals and funding
- Balancing grey with green infrastructure approaches can lead to cost effective compliance, and alignment of community and regulatory goals
- Tools are available to target stormwater retrofits, align infrastructure asset management programs, and incentivize private sector participation

CH2MHILL.

SUSAN HARPER SEATTLE PUBLIC UTILITIES

RAINWISE 2013

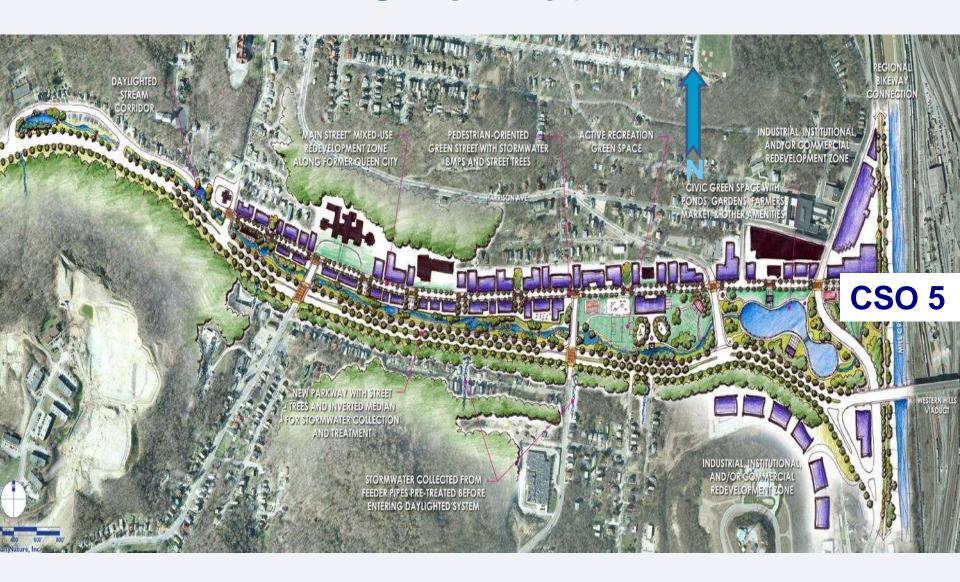
BOB NEWPORT US EPA REGION 5



Collaborative Stormwater Solutions

Bob Newport

April 8, 2014


Case Study- Cincinnati

Case Study - Cincinnati

Implementation Example Cincinnati

A "Win" for the Cincinnati CSO Program

(Lower Mill Creek Service Area)

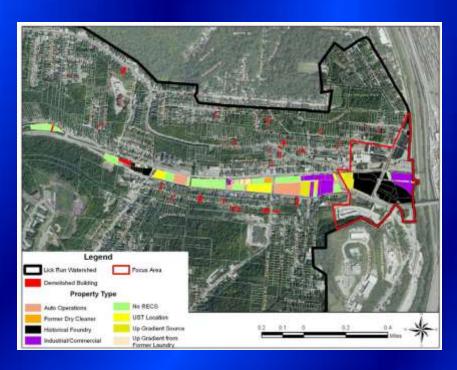
Default solution: Tunnel

Alternative solution: Keep water out of the system (strategic sewer separation, "green corridor) and "right size" grey infrastructure components

Reduction in CSOs: 1.78 billion gallons (in a typical year for these sewersheds)

Costs

- Default: \$414.4 million (2006 dollars)
- Alternative: \$244.3 million (2006 dollars)


A Potential "Win" for the Community

- Adjoining streets will be "parkside drives"
 - Economic revitalization opportunities
- Open space and recreation
 - Neighborhood amenities
 - Health benefits

But Logistically More Complicated for the Sewer District

- Land acquisition
- Brownfield issues
- Demolitions
- Historic preservation
- Re-route surface transportation network
- Zoning
- Community involvement
- Maintenance

Partnerships and Stakeholders

- City & County Departments
- Mill Creek Restoration Project
- Community Building Institute –
 Xavier University
- University of Cincinnati
- Local Initiative for Support Corporations (LISC)
- OKI Regional Council of Governments
- Chamber of Commerce Agenda 360
- US Green Building Council

- Business owners in the Corridor
- Neighborhood Organizations
- Green Partnership of Greater Cincinnati
- Cincinnati Preservation
- State of Ohio
- Port Authority of Greater Cincinnati
- Cincinnati Park Board

So Collaboration Can Produce Win-Win Outcomes, and Looking Across Organizational Budgets, It Can Help Save Money

But Providing for Effective
Collaboration Can Seem Like A Lot
of Work, and There Can Be Many
Logistical and Institutional Barriers to
Overcome

Collaborations Between Stormwater Authorities and Park Districts

- Parks provide opportunities for stormwater practices
- But there has to has to be something in it for the Park District
 - New and Existing Park Demands
 - Trails and connectivity
 - Natural areas and habitat restoration
 - Reduced Maintenance Costs
 - Mowing grass costs money!
 - Native plantings instead of turf

Key Point #1

Creating an interconnected system of parks and open space is manifestly more beneficial than creating parks in isolation.

Key Point #2

Cities can use parks to help preserve essential ecological functions and to protect biodiversity.

Key Point #3

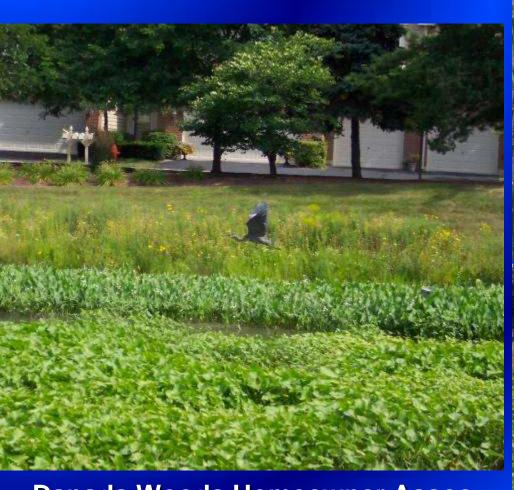
When planned as part of a system of green infrastructure, parks can help shape urban form and buffer incompatible uses.

Key Point #4

Cities can use parks to reduce public costs for stormwater management, flood control, transportation, and other forms of built infrastructure.

Village of South Holland Veterans Memorial Park

Village of South Holland, Veterans Memorial Park Let's Add a Natural Area! Naturalized Stormwater Basin



Geneva School District Geneva Middle School North

Homeowner Associations

Danada Woods Homeowner Assoc.
Naperville, IL

Corporate Campuses

Collaborations between Stormwater Authorities and Transportation Organizations

 In almost any city there are opportunities for green streets

Grange Avenue Bioswale Greendale, WI

Traffic Calming

NE Siskiyou Street Portland, OR

Collaborations between Stormwater Authorities and Transportation Organizations

Excellent opportunities, but implementation challenges can often be encountered, e.g.,

- Design standards don't seem to accommodate the green practice
- Combining funding sources may be logistically complicated
- Who will do the maintenance?

Aligning Schedules

It is almost always less expensive to put in place green features at the time road repairs or replacements are being made vs. doing the green infrastructure as a standalone project

Transportation, Economic Development, and Stormwater - Lansing, MI

Michigan Avenue

TetraTech and C2AE

Michigan Avenue

- 4 city blocks, both sides
- Typical garden, no overflow for 1-inch event
- 600 block north side, no overflow for 4.1inches (25-year event)

Economic Development

- Department of Commerce
 - "Green" Industrial Park
- Small Business Administration
 - Firms to perform maintenance
- Entry level landscaping: Job skills with inspiring purpose
- "For the first time, I can go home and tell my mother I'm proud of what I'm doing"

Chicago GreenCorps at Our Lady Gate of Heaven project site

Brownfields Program

- Implementing stormwater practices on infill sites and vacant parcels – some may be Brownfield properties
- Collaboration with the Brownfields program is needed to make sure all legal requirements are met and to make sure there are no unexpected or unintended consequence from implementation of a stormwater control measure
- Example: infiltration practices where there is soil contamination

Land Banks

Menu of Bid Spec Modifications to Improve Demo Practices

- Soils for Earthwork
- Placement of Fill
- Grading
- Soil Stabilization and Seeding
- Impervious Surface Removal
- Pre-Demolition Survey
- Asbestos NESHAP Compliance
- Managing Harmful Dust
- Waste Management Plan
- Recycling and Salvage
- Waste Handling and Disposal
- Deconstruction

Earthworks Bid Specs

Waste Management Bid Specs

Coordinate Stormwater Program with work on Climate Change, Resiliency, and Flooding

Methods for Effective Collaboration

- Convene discussions with local groups, State agencies, Federal partners
- Convene discussions with business leaders on issues such as how green can contribute to economic revitalization and jobs
- Leveraging funding for related projects (e.g., lining up HUD or DOT funds to combine with stormwater funds)
 - Integrated asset management
- Engage foundations in discussions on opportunities for involvement
- Technical assistance on Brownfield issues
- Technical assistance on property acquisition/assembling parcels
- Technical assistance on historic preservation and adaptive reuse of buildings
- Technical assistance on institutional arrangements (e.g., partnerships with parks, partnerships with schools)
- Technical assistance on updating zoning, codes and ordinances

Methods for Effective Collaboration

- Look for common goals, establish shared vision
- Look for win-win situations, usually should be something in the plan for collaborating partners
 - Multi-purpose projects
- Communicate and quantify
- Identify barriers
 - Budgeting/cost-sharing
 - Timing
 - Ordinances
 - Standard Methods (e.g., DOT Manual)
 - Immediate solutions (variance)
 - Long-term solution (update manual, update ordinance)

Please wait for the microphone; state your name and affiliation

Q & A

Upcoming MPC Roundtables

- Smart Systems, Resilient Regions
 - Tuesday, May 20, 2014
- Progress on the GO TO 2040 Comprehensive Plan
 - Thursday, May 29, 2014
- Register now at metroplanning.org

Metropolitan Planning Council 80 Years of Reinventing the Region Thank you!

Please return your completed survey.