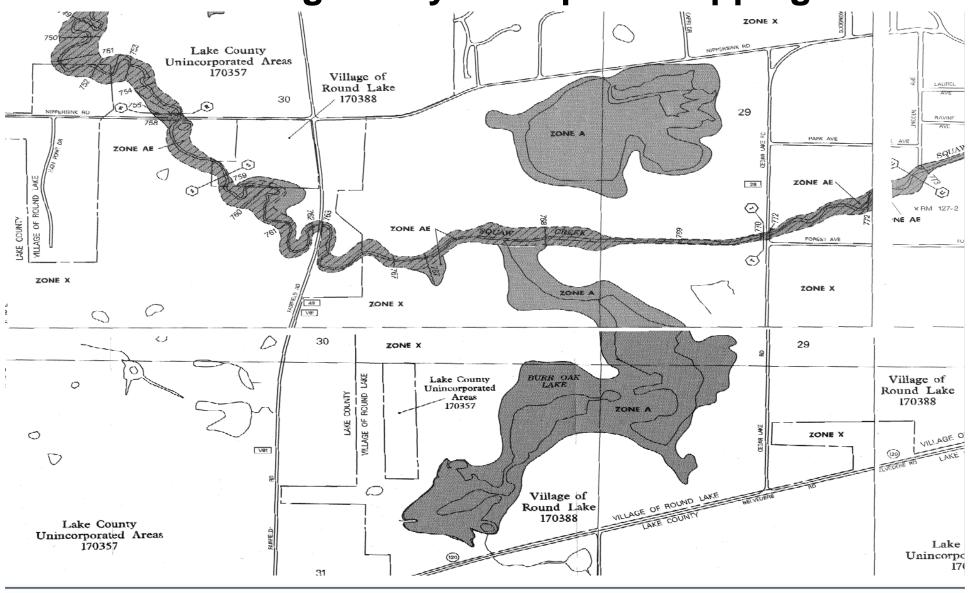
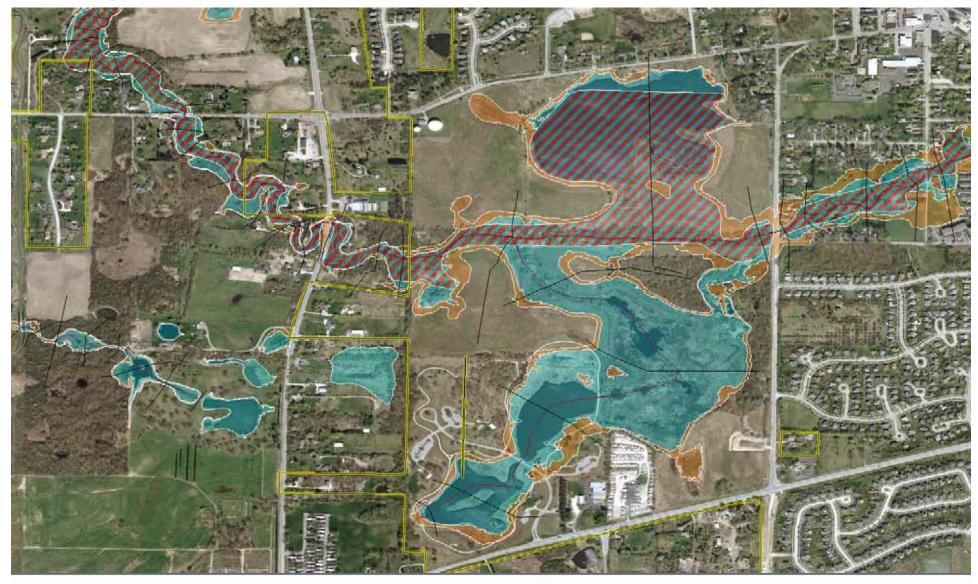
Watershed Specific Release Rate Analysis: Cook County, Illinois

Calumet Stormwater Collaborative and Metropolitan Planning Council May 6, 2022

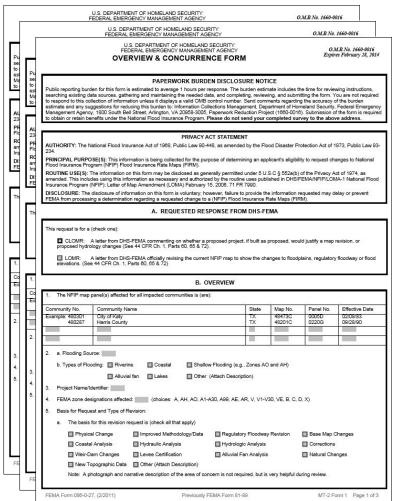
Gregory Byard



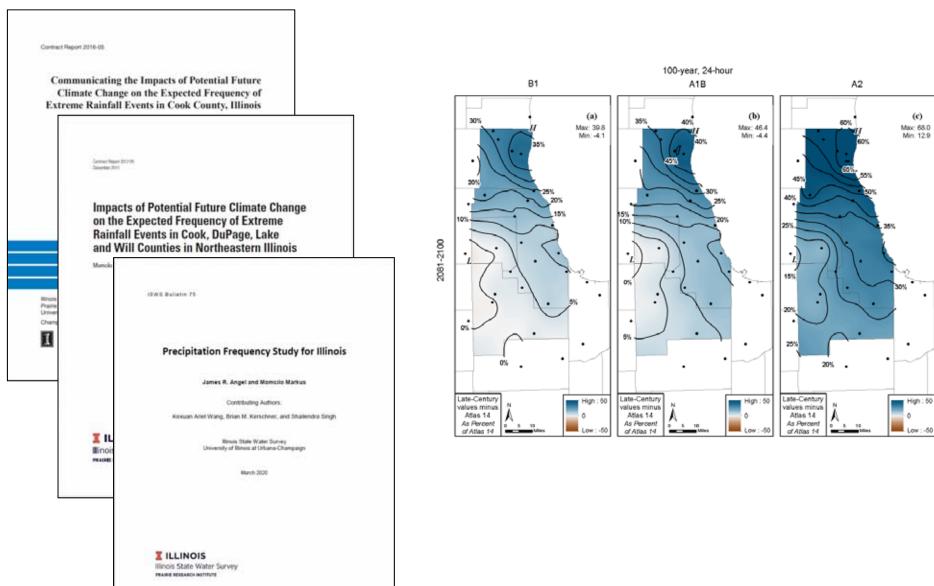
Illinois State Water Survey
PRAIRIE RESEARCH INSTITUTE


Prairie Research Institute at the University of Illinois

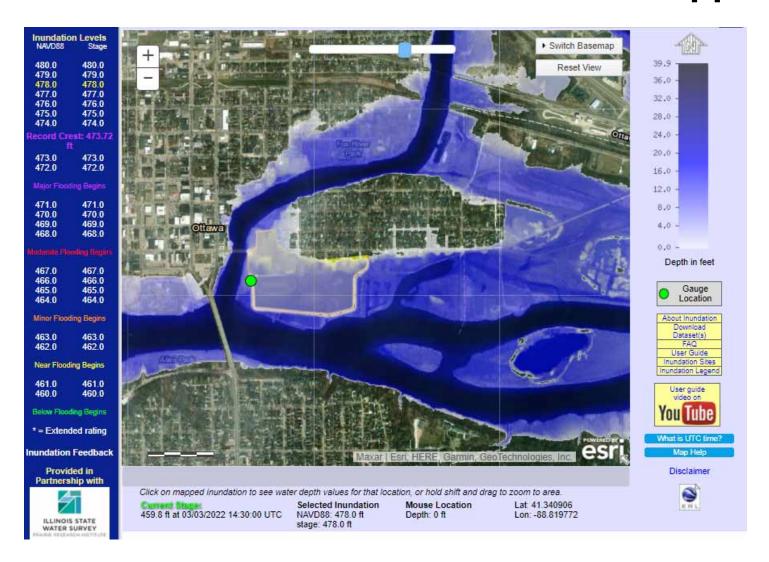
- Illinois State Geological Survey
- Illinois Natural History Survey
- Illinois State Archaeological Survey
- Illinois Sustainable Technology Center
- Illinois State Water Survey
 - Climate and Atmospheric Science
 - Groundwater Science
 - Health and Environmental Applications Laboratory
 - Watershed Science
 - Coordinated Hazard Assessment and Mapping Program

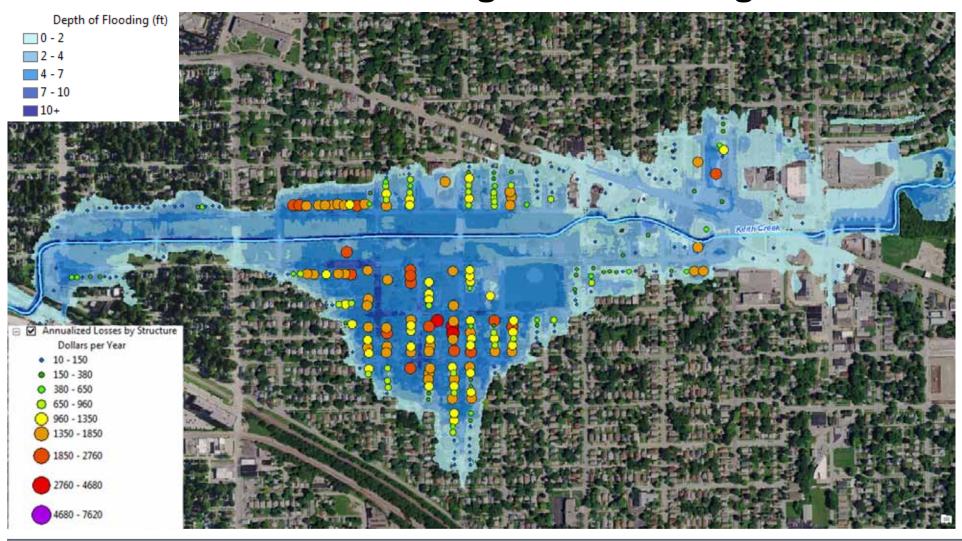

FEMA Regulatory Floodplain Mapping

FEMA Regulatory Floodplain Mapping

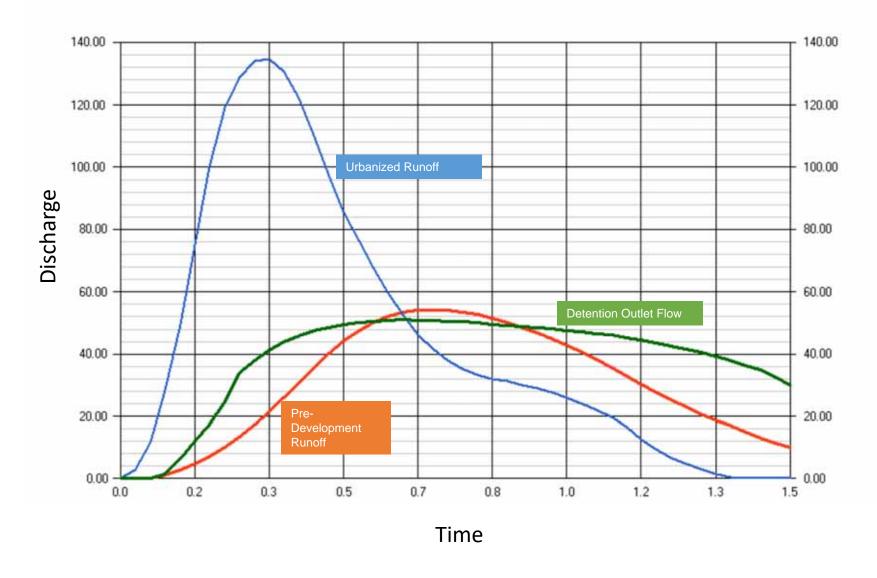


Illinois MT-2 LOMR Review



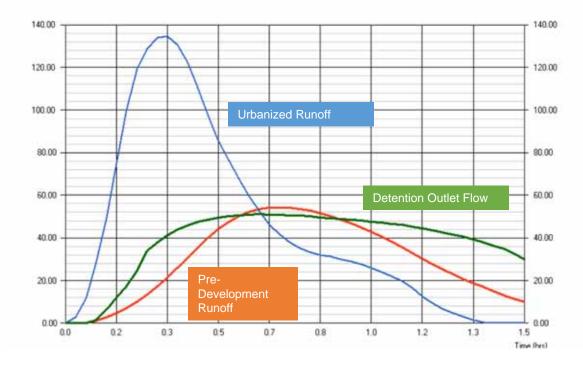

Analysis of Extreme Rainfall Patterns

Real-time Flood Forecast Inundation Mapping



Structure Based Risk Assessments and Hazard Mitigation Planning

Watershed Specific Release Rate Project Review


Development impact on hydrology

Development impact on hydrology

Factors determining the effectiveness of a watershed specific release rate:

- 1. Release rate compared to existing runoff rate
- 2. Watershed timing
- 3. Increased runoff volume / restrictive structures

Spatial Extents of Release Rate Analysis

Public Comments on Release Rates

Initial WMO Ordinance Draft Prior to 2014

- Initially: 0.30 cfs/ac, decreasing to 0.15 cfs/ac after 5-years
- Provides transition period to 0.15 cfs/acre

Selected Comments:

- "Serious concerns over the potential negative impacts to development and redevelopment due to increased cost"
- "Reasonable compromise"
- "This will put Cook County at a competitive disadvantage"
- "Make no further compromises on release rates"
- "Water quality and erosion control must improve, proper release rates based on science are a critical part of the WMO"

Project Goal

Article 5. Requirement for Stormwater Management, Section 504: Site Detention Requirements

- 3. The allowable release rate for a development shall be determined at the time a complete Watershed Management Permit application is accepted by the District and shall be:
 - A. 0.30 cfs/acre of **development** for the **storm event** having a one percent probability of being equaled or exceeded in a given year (100-year storm event) until April 30, 2019; and
 - B. Based on a watershed specific release rate after and including May 1, 2019 as specified in Appendix B. The watershed specific release rate shall not be less than 0.15 cfs/acre of development.

Project Objective

Release rate selection objective:

Determine regulatory release rates that mitigate the impacts of development by maintaining the 1% annual-chance flood event elevations at or below current levels.

Watershed Specific Release Rate Study

→ Develop

9 Methodology

Base and Future

Conditions

Modeling:

Pilot Watersheds

→ Sensitivity

Analysis,

Parameter

Selection

Methodology Recommendation Base and Future

© Conditions

Modeling:

6 MWRD

Watershed

Planning Areas

Review and

analyze results

Present results to

TAC for review and comment

Prepare and

Deliver Final

Deliver Final
Report and model

documentation

Expand study to

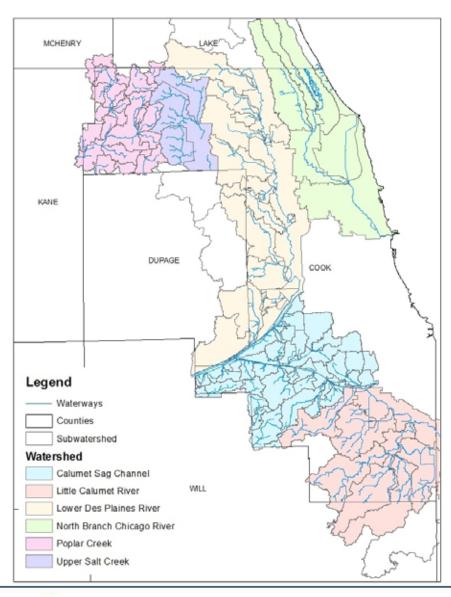
Phase include:

DIA Impacts

Water Quality

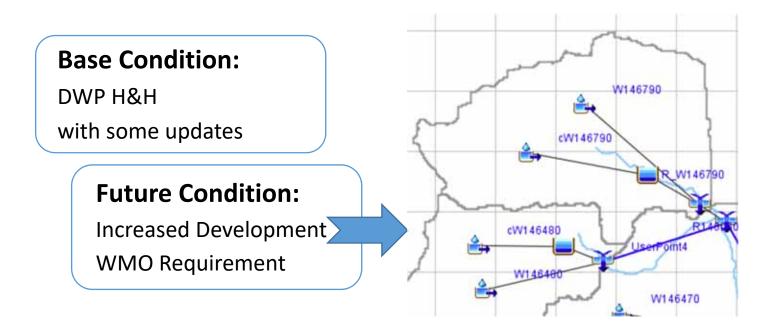
Collar County Impacts

Methodology


Methodology

Phase I

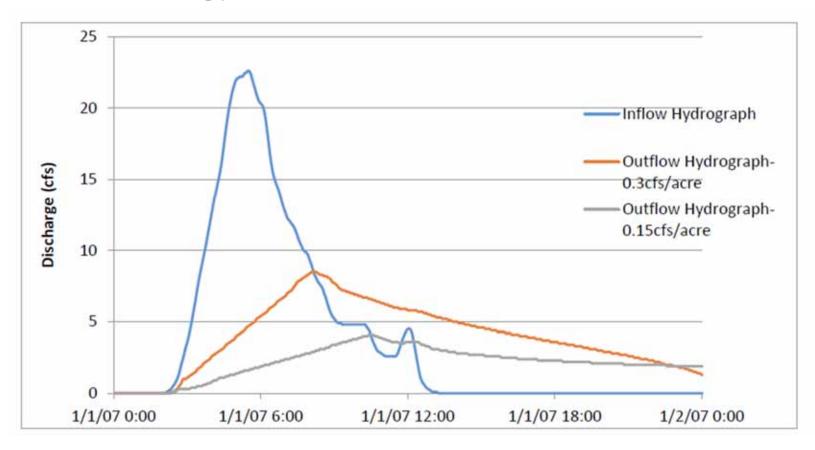
- Evaluate two pilot study areas
- Develop streamlined methodology and set of assumptions
- Evaluate release rates for pilot study areas and garner technical feedback


Phase II

- Apply the methodology developed in Phase I in each Watershed Management Area
- Evaluate release rates for watersheds under WMO regulation

Basis of Methodology

Model Elements


- Watershed
- Subwatershed
- Subbasin

Subwatershed Selection

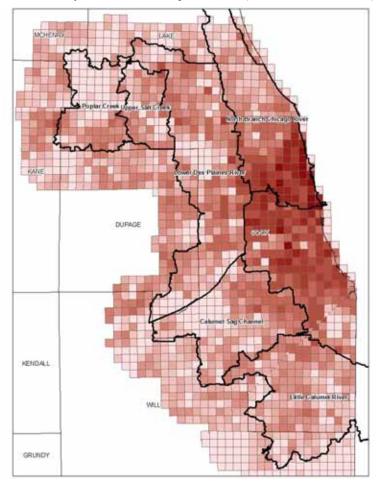
- Identify key, selection controlling subwatersheds based on Phase 1 results
- Unnecessary to model every last acre

Watershed Specific Release Rate Study

Methodology Overview

Watershed Specific Release Rate Study

Assessing the Methodology


- Evaluate Assumptions & Validate Model
 - Sensitivity to critical duration
 - Sensitivity to future Curve Number selection
 - Sensitivity to transformation parameters
 - Validation of volume control modeling results
 - Validation of future detention volume
 - Validation of future development rates and patterns
- Efficient Application
 - Programming completed to apply future hydrology edits and run hydraulic modeling
 - Map and hydrograph products automated to assist with analysis

Landuse Evolution and impact Assessment Model (LEAM)

GOTO 2040 Agricultural Preservation Strategies The University of Illinois at Urbana-Champaign LEAM Laboratory and the Chicago Metropolitan Agency for Planning October 23, 2008

2050 Population Projection (in households)

Selected Methodology

Base Model

 DWP Unsteady State HEC-HMS and HEC-RAS Models, analyzed at critical duration

 Updated for recent major stormwater projects

Future Development

• Uniform 40% Development/Redevelopment Meeting the WMO (with adjustments for preserve lands)

 Uniform development was selected to evaluate release rates. 40% was supported by land use change analysis

Detention

 Modeled reservoirs meeting various Watershed Release Rates for the 100-year 24-hour storm with separate control volume

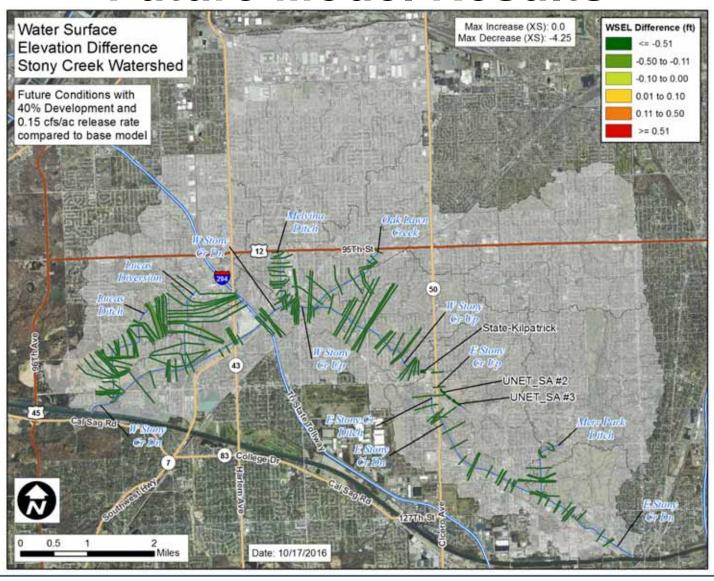
 Linear hydrograph modeled with storage-discharge functions.

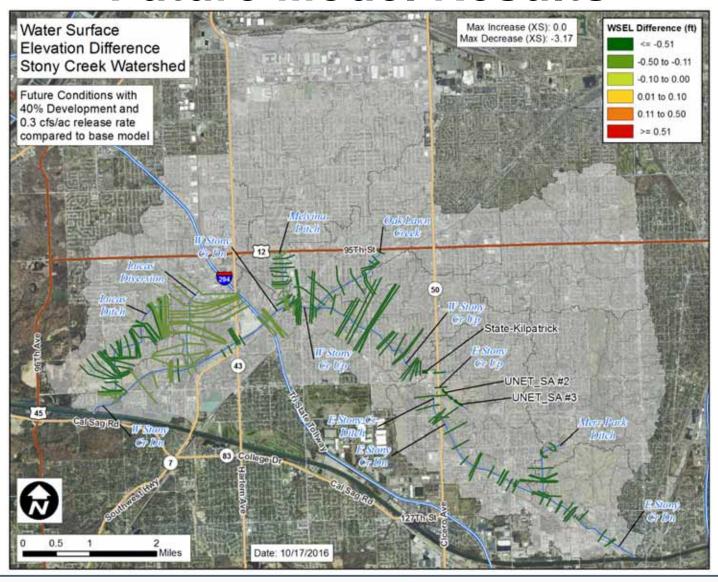
Release Rate

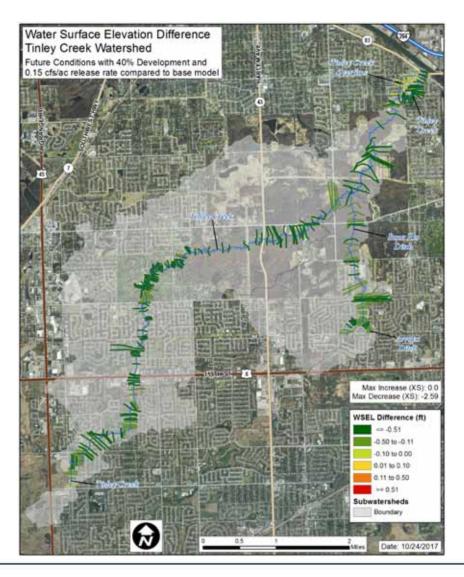
• 0.15, 0.2, 0.25, and 0.3 cfs/acre were analyzed

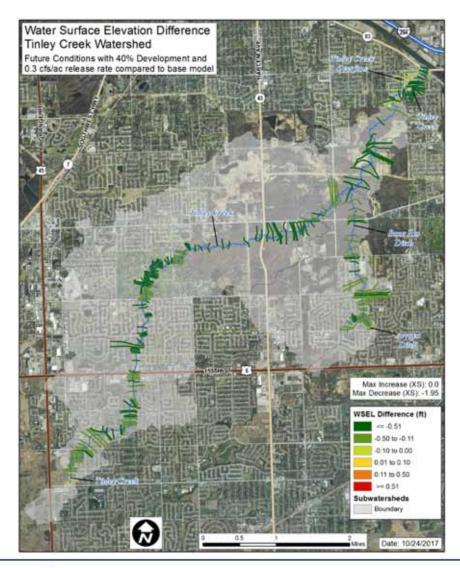
 Outside of the WMO regulatory area the release rate of the adjoining jurisdiction was applied

Analysis of Release Rates


Base Model Summary


Modeled Subwatersheds


- **Tinley Creek**
- **Stony Creek**

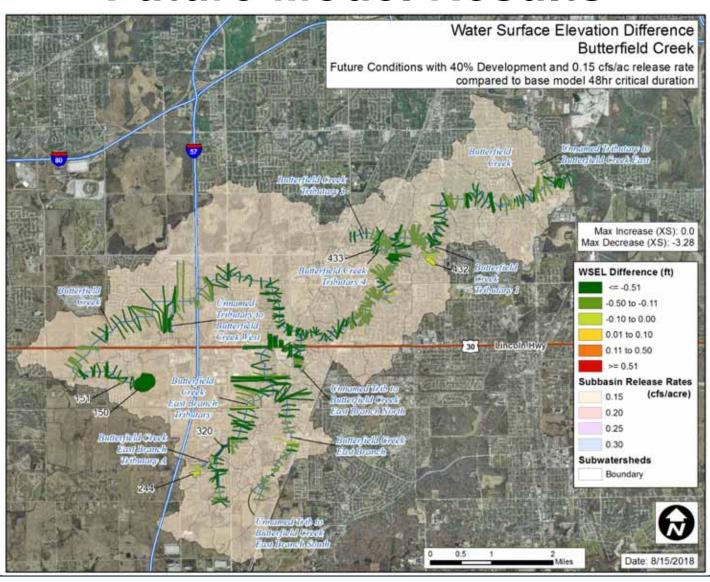

Base Runoff Rates

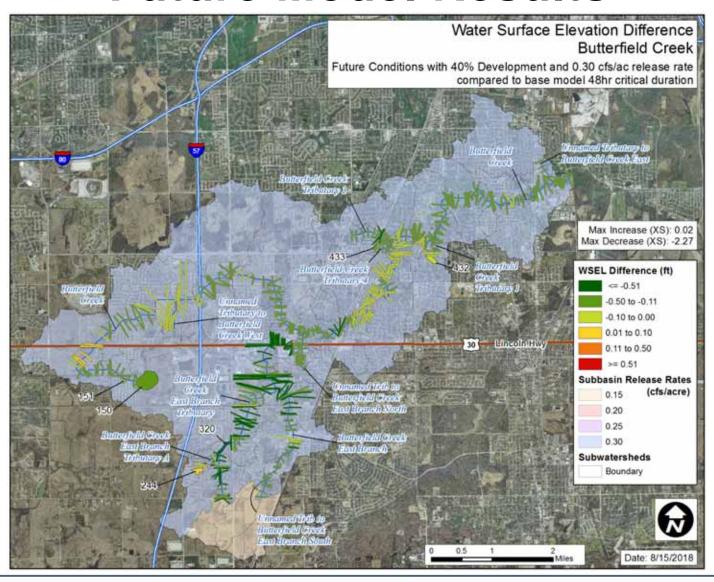
		Critical duration		
	Subwatershed	Average Base Conditions Peak Runoff Rate (cfs/acre)	Subbasin Base Conditions Peak Runoff Rate Range (cfs/acre)	Critical duration event
Calumet Sag	Stony Creek	0.69	0.35 - 0.94	12hr
	Lucas Ditch	0.66	0.45 - 0.80	12hr
	Lucas Diversion Ditch	0.77	0.62 - 0.93	12hr
	Melvina Ditch	0.77	0.64 - 0.97	12hr
	Merr Park Ditch	0.73	0.63 - 0.85	12hr
	Oak Lawn	0.78	0.62 - 0.87	12hr
	Tinley Creek	0.72	0.57 - 1.00	12hr

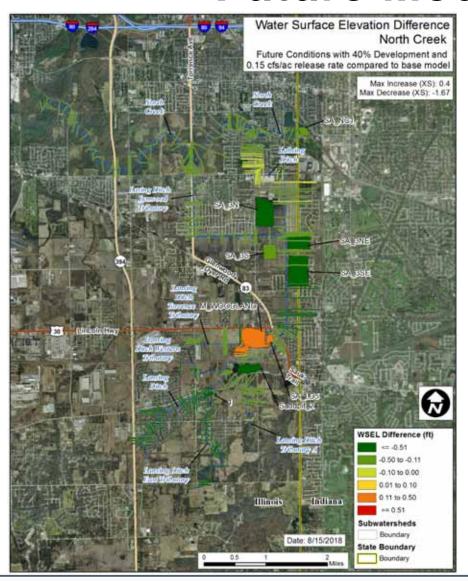
Analysis of Effect of Release Rates

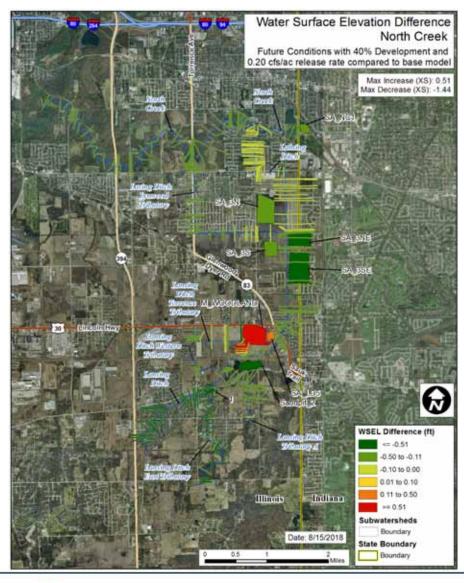
			WMO release rate			
Creek tershed	Criteria	0.15 cfs/ac	0.20 cfs/ac	0.25 cfs/ac	0.30 cfs/ac	Stream length
Stony Subwa	Stream length with increase in peak WSEI> 0.1' (ft)	0	0	0	0	
	Stream length with increase in peak WSEI> 0.1' (%)	0.0%	0.0%	0.0%	0.0%	75,359
	Reservoirs in RAS model with increases > 0.5'	0	0	0	0	

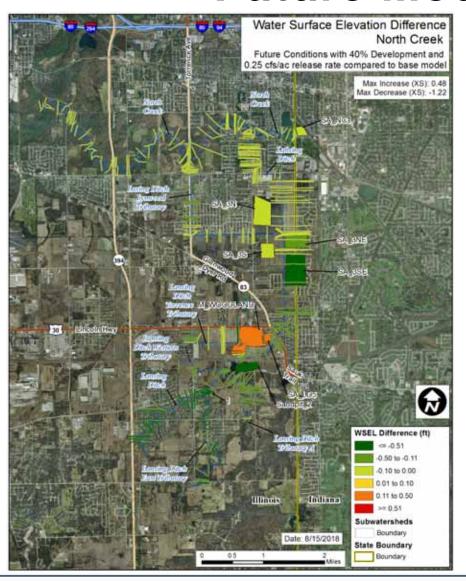
			WMO release rate				
inley Cree bwatersh	Criteria	0.15 cfs/ac	0.20 cfs/ac	0.25 cfs/ac	0.30 cfs/ac	Stream length	
	Stream length with increase in peak WSEI> 0.1' (ft)	0	0	0	0	90,668	
	Stream length with increase in peak WSEI> 0.1' (%)	0.0%	0.0%	0.0%	0.0%		
	Reservoirs in RAS model with increases > 0.5'	0	0	0	0		

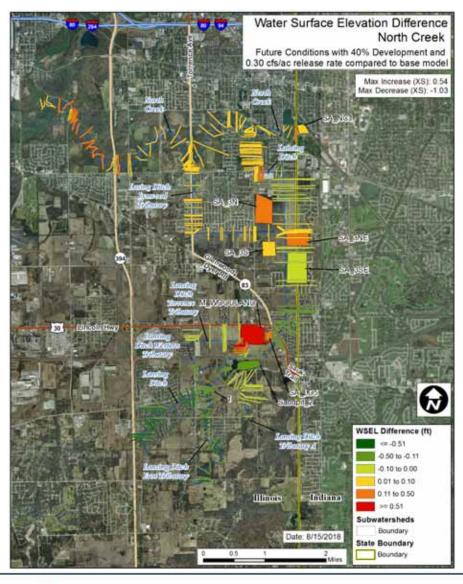

Base Model Summary


Modeled Subwatersheds:


- **Butterfield Creek**
- North Creek


Base Runoff Rates

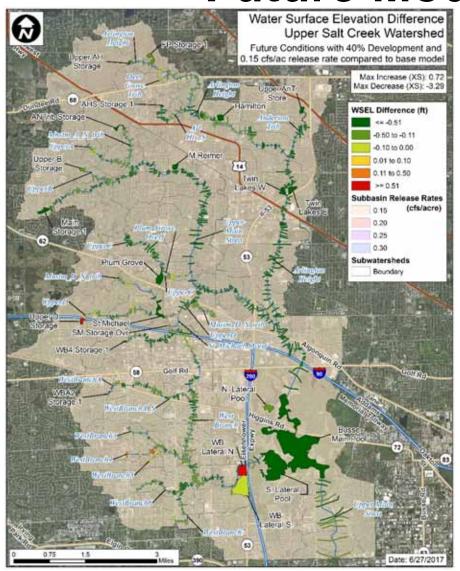

		Critical duration			
	Subwatershed	Average Base Conditions Peak Runoff Rate (cfs/acre)	Subbasin Base Conditions Peak Runoff Rate Range (cfs/acre)	Critical duration event	
Little alumet	Butterfield Creek	0.43	0.30 - 0.64	48 hr	
Lit	North Creek	0.35	0.20 - 0.52	48 hr	

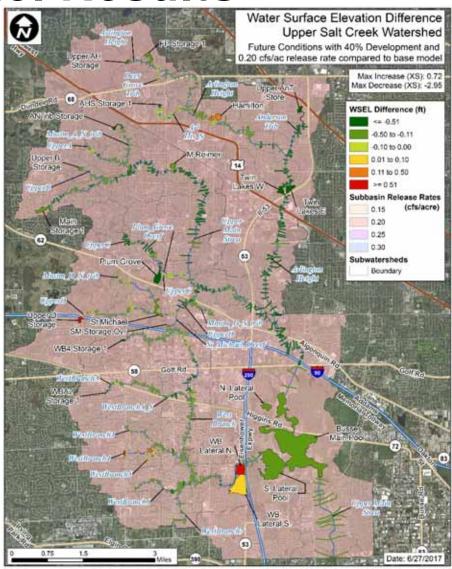


		W	Total			
호 :	Criteria	0.15 cfs/ac	0.20 cfs/ac	0.25 cfs/ac	0.30 cfs/ac	Stream length
erfiel	Stream length with increase in peak WSEI> 0.1' (ft)	0	0	0	0	
Butter	Stream length with increase in peak WSEI> 0.1' (%)	0.0%	0.0%	0.0%	0.0%	136,447
	Reservoirs in RAS model with increases > 0.5'	0	0	0	0	

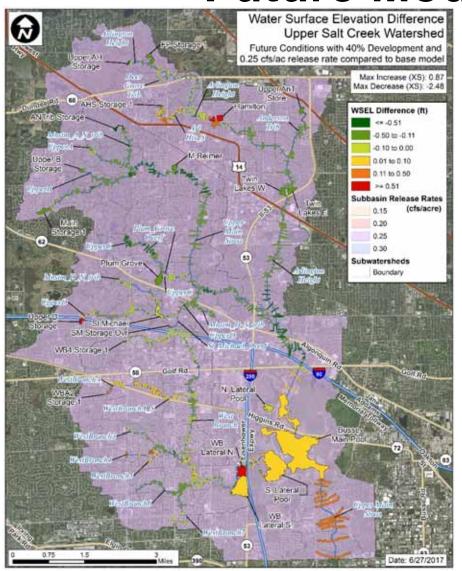
			WMO release rate				
th Cree	Criteria	0.15 cfs/ac	0.20 cfs/ac	0.25 cfs/ac	0.30 cfs/ac	Stream length	
	Stream length with increase in peak WSEI> 0.1' (ft)	1,066	1,066	1,066	10,796		
	Stream length with increase in peak WSEI> 0.1' (%)	0.9%	0.9%	0.9%	9.0%	120,272	
	Reservoirs in RAS model with increases > 0.5'	0	1	0	1		

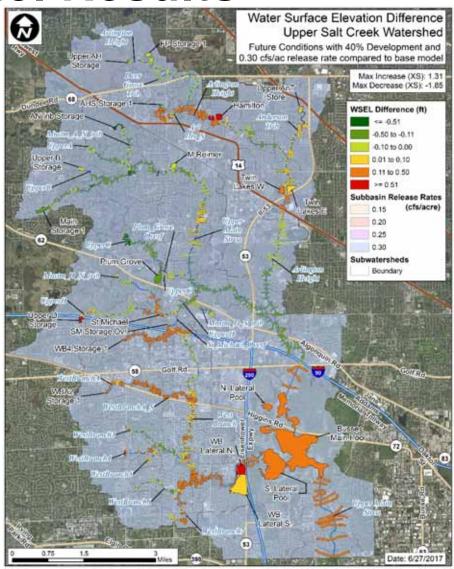
Base Model Summary


Modeled Subwatersheds:


- **Upper Salt Creek Mainstem**
- Upper Salt Creek West Branch
- Upper Salt Creek Arlington Heights Branch

Base Runoff Rates


		24 hour	24 hour				
	Subwatershed	Average Base Conditions Peak Runoff Rate (cfs/acre)	Subbasin Base Conditions Peak Runoff Rate Range (cfs/acre)	Critical duration event			
ialt	Upper Salt Creek Mainstem	0.36	0.11 - 0.68	24 hr			
Upper Salt Creek	Arlighton Heights Branch	0.35	0.14 - 0.63	24 hr			
dn_	West Branch	0.26	0.11 - 0.55	24 hr			


Future Model Results

Future Model Results

			WMO release rate				
lt Creek	Criteria	0.15 cfs/ac	0.20 cfs/ac	0.25 cfs/ac	0.30 cfs/ac	Stream length	
<u> </u>	Stream length with increase in peak WSEI> 0.1' (ft)	2,200	2,530	15,794			
	Stream length with increase in peak WSEI> 0.1' (%)	0.8%	0.9%	5.6%	29.7%	282,780	
	Reservoirs in RAS model with increases > 0.5'	2	2	3	3		

Results: Considerations for Watershed Specific Release Rates

		W	Total			
Sag	Criteria	0.15 cfs/ac	0.20 cfs/ac	0.25 cfs/ac	0.30 cfs/ac	Stream length
	Stream length with increase in peak WSEI> 0.1' (ft)	0	0	0	0	166 007
	Stream length with increase in peak WSEI> 0.1' (%)	0.0%	0.0%	0.0%	0.0%	166,027
	Reservoirs in RAS model with increases > 0.5'	0	0	0	0	

go)		W	Total			
ch Chicago	S	Criteria	0.15 cfs/ac	0.20 cfs/ac	0.25 cfs/ac	0.30 cfs/ac	Stream length
Bran	. Wa	Stream length with increase in peak WSEI> 0.1' (ft)	0	108	108	0	206 662
맊	Rive	Stream length with increase in peak WSEI> 0.1' (%)	0.0%	0.0%	0.0%	0.0%	286,663
Nor		Reservoirs in RAS model with increases > 0.5'	0	0	0	0	

		W	Total			
Creek	Criteria	0.15 cfs/ac	0.20 cfs/ac	0.25 cfs/ac	0.30 cfs/ac	Stream length
ar	Stream length with increase in peak WSFI> 0.1' (ft)	0	0	0	2,448	202 400
Popl	Stream length with increase in peak WSEI> 0.1' (%)	0.0%	0.0%	0.0%	1.2%	203,498
	Reservoirs in RAS model with increases > 0.5'	0	0	0	0	

-			W	Total			
ımet River	.shed	Criteria	0.15 cfs/ac	0.20 cfs/ac	0.25 cfs/ac	0.30 cfs/ac	Stream length
Calu	ate.	Stream length with increase in peak WSEI> 0.1' (ft)	1,066	1,066	1,066	10,796	
Little (>	Stream length with increase in peak WSEI> 0.1' (%)	0.4%	0.4%	0.4%	4.2%	256,719
Ę		Reservoirs in RAS model with increases > 0.5'	0	1	0	1	

		V	Total			
Salt Creek tershed	Criteria	0.15 cfs/ac	0.20 cfs/ac	0.25 cfs/ac	0.30 cfs/ac	Stream length
	Stream length with increase in peak WSEI> 0.1' (ft)	2,200	2,530	15,794	83,964	
Jpper	Stream length with increase in peak WSEI> 0.1' (%)	0.8%	0.9%	5.6%	29.7%	282,780
	Reservoirs in RAS model with increases > 0.5'	2	2	3	3	

			WMO release rate				
s River hed	Criteria	0.15 cfs/ac	0.20 cfs/ac	0.25 cfs/ac	0.30 cfs/ac	Stream length	
·= U	Tributary stream length with increase in peak WSEI> 0.1' (ft)	0	0	9,727	52,483	530,318	
es >	Tributary stream length with increase in peak WSEI> 0.1' (%)	0.0%	0.0%	1.8%	9.9%		
	Reservoirs with increases > 0.5'	0	0	0	2		

Phase I and II Study Results

Contract Report 2019-06 March 2019

Watershed-Specific Release Rate Analysis: Cook County, Illinois

Amanda Flegel, Gregory Byard, Sally McConkey, Christopher Hanstad, Nicole Gaynor, Zoe Zaloudek

http://bdl.handle.net/21/2/103/16

Illinois State Water Survey-

- Delivered presentations to the MWRD
 Technical Advisory Committee, each of the
 Watershed Planning Councils, and two
 public meetings
- Released ISWS Contract Report 2019-06 in March 2019

MWRD Board of Commissioners-

- Took the study results under consideration and adopted Watershed Specific Release Rates consistent with the study results as part of the May 16, 2019 update to the WMO
- The adopted release rates became effective January 1, 2020
- The May 16, 2019 update also included provisions for additional future studies related to watershed specific release rates under WMO Article 208

Phase III Study - ongoing

208. Study of Current Provisions of and Potential Amendments to this Ordinance

The District shall initiate a study of certain current provisions of and potential amendments to this Ordinance. This study will be initiated by the end of 2019 with a targeted completion date of May 2022. The study shall include the following areas:

- 1. A pilot study of a regional stormwater detention and volume control credit trading program;
- 2. Impacts of watershed specific release rates on disproportionately impacted communities;
- 3. Impacts of release rates under existing and future development scenarios in collar counties on watersheds in the District;
- 4. Impact of volume control and watershed specific release rates on stream erosion and related water quality effects such as turbidity and sedimentation; and
- 5. Board of Commissioners shall consider the study in May 2022.

Contact Information

Gregory Byard, P.E., CFM

byard@Illinois.edu

Illinois State Water Survey
PRAIRIE RESEARCH INSTITUTE