

Impacts of Restoration on Hydrology & Ecosystem Services: Studies at Deer Grove East Forest Preserve

US Army Corps of Engineers®

Question 1: How Does Restoration Impact Stormwater & Water Quality?

Question 2: What Value Does Restoration Have for the Local Economy?

Question 1: Two Sites – Deer Grove East and Tinley Creek

Question 2: One Site – Deer Grove East

Q1: How Does Restoration Impact Water?

- Literature Review of 100+ studies & peer review by public & private sector partners.
- Data from 50 shallow groundwater monitoring wells and a weather station over 5 years preand post-restoration.
- **Modeling** (SWMM) to fill any data gaps.

Model Selection

SWMM

- Can simulate drain tile hydraulics with aquifers
- Watershed-based
- Robust hydrologic and hydraulic simulation routines
- Scalable to large/complex watersheds
- Widely accepted
- Adequate user interface
- Recommended during peer outreach

Methodology

Modeling Restoration Changes (Factors Influencing Model Results)

- Drain tile hydraulics
- Land use changes
 - Depression storage modification
- Vegetation changes
 - Evapotranspiration
 - Root depth

SWMM Methodology

- Water budgets/mass balance
- Compare system storage pre- & postrestoration

 ΔS = [P + Si + Gi] - [ET + So + Go]

Simplified SWMM Equation

- Deer Grove East (a) top of watershed, so
- Si & Gi = o. Only P impacts water budget.

	2014			2015				
	Pre- Restoration	Post- Project	Percent Change	Pre- Restoration	Post- Project	Percent Change		
	Sub-catchment Results (Inches)							
Precipitation	27.0	27.0	0%	28.7	28.7	0%		
Surface Evaporation	1.9	1.2	-36%	2.2	1.0	-56%		
Infiltration (to Groundwater)	20.0	21.7	9%	22.7	24.7	9%		
Surface Runoff	5.3	4.2	-20%	3.9	3.2	-19%		

	Groundwater Results (Inches)							
Total Infiltration	19.5	21.4	10%	22.2	24.4	10%		
Upper Zone ET	1.6	1.9	19%	1.7	2.2	24%		
Lower Zone ET	12.6	20.9	67%	13.2	22.8	72%		
Groundwater Loss	2.5	2.5	-1%	2.5	2.4	-4%		
Tile Drainage	6.7	0.1	-99%	7.0	0.0	-99%		

Deer Grove East Before:

Deer Grove East After:

Site Discharge Volumes (MG)

Lower Zone ET Volumes (MG)

Figure 6. SWMM-generated water budgets for Deer Grove East test sub-catchment.

Figure 8. Calibration results for Tinley Creek test sub-catchment model.

Q2: What's Restoration "Worth"?

- Literature Review of 100's studies on ecosystem service values & methods.
- Data from FPCC user surveys, municipal water rates, etc., etc.
- **Modeling** ('IMPLAN') to quantify value.

IMPLAN Methodology

 Input-Output Analysis of "x" Costs (\$5.3M) yielding "y" Benefits.

Short-term Economic Impact

- Costs (\$5.3M) yielded \$10.5M in Benefits.
 - Jobs (FTEs), Materials, Induced & Indirect Spending by Firms, Employees.

Long-term (20 years) Economic Impacts

Cultural Services – personal value of visits to restored (\$28) v. unrestored (\$19) x 290k visits per year over 20 yrs.

• FUN FACT: 290k visitors to DGE add \$14.1M to local economy *annually.* Will more come?

Ecosystem Services – Water Quality (+30%); Water Flow/Regulation (+60%), & other services generate \$2.4M per year, slowly decreasing over 20 years.

Costs (\$5.3M) yielded \$33.5M in Benefits.

Short-term (\$10.5M) + Long-term (\$33.5M) = \$8.3:1 Benefit-Cost Ratio

LESSONS LEARNED

- There is potential to conduct restoration at scale.
- Modeling can help design different restoration outcomes that meet local needs (i.e. stormwater).
- There is an economic case for local communities to participate in (& support) restoration projects.
- Economic data & methods need continuous review & improvement.
- Ecosystem services are tough (& expensive) to calculate on a local scale.

<u>Models Indicate Strong Economic & Stormwater</u> <u>Case for Restoring Natural Areas and Great</u> <u>Financial Incentive to Conduct Projects Elsewhere.</u>