

More Data → Better Stormwater Outcomes?

- Our lives are awash in data
- How does this apply to stormwater?
- Are we creating better solutions using this data?

Digital Watershed Concept

Ability to quickly and seamlessly integrate data, models, and infrastructure / system information to meet goals

Potential Drivers for a Digital Watershed

Alerting / early-warning systems

Prioritization of Solutions

Post-Construction Monitoring

Better Solutions

Equity / Inclusion

Adapt to changing environment

Performance Metrics

Scenario Comparison

Automated results processing for efficiency, standardization

Regional Impacts

Assess local green/grey improvements with regional context Regional decision-making with local resolution

Sensor Data?

User?

Access?

Digital Twin

Digital representation of a complex system integrated with realtime sensor data and some sort of process model

Technology Perspective

How do we make everything talk?

Harmonizing People, Process, Technology for Digital Transformation

WRF 5039 Study Underway for Intelligent Water Systems

Strategy

Tactical

Operational

Hydraulic Models

Represent physics of complex systems

- Ask "what if questions"
- Help understand WHY systems respond a certain way
- Key issues
 - Scale / resolution
 - boundaries across systems
 - •changing system?

Model Data Management SinfoWorks ICM Rain Gauges Flow Meters Radar Rainfall

Version Control

Data Flags Automation Pump Status

Innovyze^{*}

• Solutions exist, but our industry is not good at them

SWMM Models

Continuous integration / continuous delivery for software

Optimizing the System

Leveraging the hydraulic model with cloud computing and advanced algorithms to systematically search for better and better solutions

- Performance Criteria
- Lifecycle Cost
- CSO Volume

Execute Optimization

- Use cloud computing and algorithms to scale modeling analysis
- Evaluate 10^5+ options

Review and Interrogate Results

StormStore: Innovative ways to match stormwater management to demand

The People Side...

Work patterns influence solutions

Typical Unmanaged Analyst Environment

Self-Service Architecture

Ability to seamlessly pull data needed without intermediary

Getting to Solutions Potential of the Digital Watershed

- Stormwater problems are hard!
 - Data is not enough
 - How can more/better/faster data help?
- Incremental progress towards vision
 - Operational time-scale
 - Strategic vision
 - Alignment across time-scales
- Engage people and processes with new tools/technology

Figure 2-3. Mock-up of Interactive Mapping Application

Digital Calumet Watershed Value or Distraction?

- Application to stormwater challenges in the Calumet area?
- Experience leveraging data/technology to stormwater?
 - Effective tools/processes
 - Lessons learned?
- Initial steps towards a Digital
 Watershed be for the Calumet?

Thanks! mason@confluency.ai

