

Emerging Contaminants in the Environment

EDC Roundtable Elgin, IL

Dana Kolpin Toxic Substances Hydrology Program September 15, 2011

U.S Department of the Interior U.S. Geological Survey

EC "umbrella term"

- Antibiotics
- Hormones
- Natural toxins
- Fragrances
- Detergents
- Plastics
- PFOS / PFOA
- Pathogens
- Resistance genes

- Human/vet drugs
- Byproducts
- Fire retardants
- Disinfectants
- Fumigants
- Plant/animal sterols
- Insecticides/Repellants
- Algal toxins/mycotoxins
- Nanomaterials

Better Living Through Chemistry

and workplaces

To our water resources

x1000s of chemicals are in use daily

Not your father's caffeine....

Fundamental Research Questions

- Are ECs entering our environment?
- What are the sources (signatures)?
- What happens to them in the environment?
- Do they have adverse ecological health effects?
- Do unintended exposures pose a human health risk?
- How can we minimize their entry to the environment or remove them?

Increasing Research on ECs - Six target journals

Glassmeyer, 2010

Are ECs entering our environment?

- Present in ground water and streams at <u>sub-ppb conc.'s</u>.
- Present as complex <u>mixtures</u>.
- Entering via <u>human &</u> <u>animal waste pathways</u>.

(Kolpin, et al., 2002; Barnes et al., 2008; Focazio et al., 2008)

Removal in Treatment, NJ Facility

Stackelberg et al., 2004 & 2007

Water "Cycle"

Uptake into Plant and Animal Tissue

- Trimethoprim: in <u>carrots & lettuce</u>; Boxall et al., 2006
- Sulfamethazine: in <u>corn, lettuce, potatoes;</u> Dolliver, et al., 2007
- Triclosan & Trimethoprim: in <u>earthworms;</u> Kinney et al., 2008
- Diclofenac: in <u>mussels</u>; *Ericson et al., 2010*
- BPA: in <u>fish;</u> *Mita et al., 2011*
- Antidepressants: in <u>fish;</u> Schultz et al., 2010
- Triclosan: in dolphins; Fair et al., 2009

Ubiquitous Human Exposure

Dermal

- cosmetics, soaps, other personal care products

- exposure to triclocarban after showering (Schebb et al., 2011)

Diet

- food and drink

Inhalation

- e.g. household dust

Occupational exposure

Evidence for Ecological Effects

- Progestin: Disruption of oviduct and ovary development in frogs; *Kvarnryd et al., 2011*
- Sulfamethoxazole: Affected denitrification rates in bacteria; Underwood et al., 2011
- Triclosan: Inhibited soil microbial respiration; *Butler* et al., 2010
- Trenblone: Irreversible fish masculinization; Morthorst et al., 2010
- Antidepressants: Impaired predator avoidance behavior larval fathead minnow; *McGee et al.* 2009.

An Approach to Linking Chemical Exposure and Endocrine Disruption

On Site - stream waters with controlled photo-period and water temp.

Vajda et al., 2011

Human Health Effects?

- Less is known related to human health effects
 - difficulty in conducting epidemiological studies
- Concern of fetal exposure

 classic example: diethystilbestrol
- Animals as sentinels
- View that adverse effects from pharms in drinking water are not expected (Bruce et al., 2010; WHO, 2011)

New Questions Raised

- Epigenetics
 - e.g. chemical modification of DNA (Choudhuri, 2010)

fetal basis of adult disease
 (early exposure → late effects)

 Transgenerational transmission

 chemicals exposed to now could impact future generations

Novel lab and field approaches needed to fully understand the ultimate effects from exposures to complex mixtures

Questions?

toxics.usgs.gov/regional/emc