

Thinking Like a CEO:

Running a Water Utility as a Business

Paul D. May, P.E. Northwest Surburban Joint Action Water Agency (JAWA)

June 4, 2019 Drinking Water 1-2-3 Academy

Introduction:

The state of our infrastructure Regional needs Asset Management The business case


Chicago, Montrose/Honore

The municipality as a BUSINESS UTILITY

- Municipal Services
 - Police, Fire, Community Development, etc.

- Municipal <u>GOODS:</u>

- Operation of a production facility (Value added)
- Delivery of goods to consumer
- Purchase Agreement
- Measurement of goods delivered
- Payment
- Municipal Goods are converted into products with additional value added.
- Correlation exists to private utilities

Water Infrastructure Condition

ASCE Analysis (American Society of Civil Engineers)

- 240,000 water main breaks annually
- Replacement cost exceeds \$1Trillion
- 2017 "D" rating
- 22 billion gallons of Lake Michigan is leaked annually (\$64M - \$124M loss)
- Many municipalities with groundwater sources exceed 10% water loss.
- Watermain breaks impact other services (GMP) Gross Municipal Product
 - transportation,
 - emergency access, and
 - Businesses (restaurants, hotels, manufacturing, etc.)

NASTEWATER

DRINKING WATER

Asset Management

Water infrastructure is the asset

- Production: wells/treatment plant
- Delivery: distribution system/pipes
- Measurement: water meters
- Water infrastructure is also the liability
 - Depreciation
 - Replacement Cost

 How would the market respond if the private utilities managed assets like many municipalities?

Why it matters - Delivery Failure

Uncollected Revenue (10%+)

- Under-registering meters
- Water leaks
- Watermain breaks

Unnecessary Expenditures
Power/Energy
Chemicals

Maintenance Costs

Mismanaged Raw Materials
 Groundwater depletion without delivery

Life-cycle Costs – Not a Mystery

TABLE $4 \star$ The Useful Lives of Drinking-Water System Components

COMPONENT	USEFUL LIFE (YEARS)
Reservoirs and dams	50-80
Treatment plants—concrete structures	60–70
Treatment plants—mechanical and electrical	15–25
Trunk mains	65–95
Pumping stations—concrete structures	60–70
Pumping stations—mechanical and electrical	25
Distribution	60–95

SOURCE EPA (2002, table 2-1).

What will the CEO do?

Quantify Losses

- AWWA M36 Water Audit
- Leak Detection
- Meter testing
- Compute nonrevenue water
- Account for both assets and liability
- Fund for infrastructure replacement

Thank You!

CONTACT INFORMATION: Paul D. May, P.E.

Assistant Executive Director

Northwest Suburban Municipal Joint Action Water Agency

pmay@nsmjawa.com

of Americans think it's important to improve and modernize water & wastewater systems.

The Value of Water National Poll, 2016