

Probabilistic Flood Mapping Using Volunteered Geographical Information

Samuel Rivera¹

srivera2@illinois.edu

Collaborators: Marc Girons Lopez², Jan Seibert², Barbara Minsker³

¹ University of Illinois at Urbana-Champaign, IL
² Uppsala University, Sweden
³ Southern Methodist University, TX

UPPSALA UNIVERSITET

Motivation

Traditional flood inundation maps

- 1-D, 2-D or 3-D hydrologic model and/or remote sensing
- Limited by spatiotemporal resolution of input data

Motivation

Wealth of real time flood information

 Social media, news, emergency calls, etc.

Parts of Downtown Austin are underwater @foxaustin #txflood2015 #atxflood #ShoalCreek #AustinFloods

Motivation

- 1-D, 2-D or 3-D hydrologic model and/or remote sensing
- Limited by spatiotemporal resolution of input data

Research question:

illinois.edu

 Social media, news, emergency calls, etc.

How can **volunteered geographical information (VGI**) be used to provide reliable **probabilistic flood maps**, especially in areas where no model and/or gauge data is available?

Conceptual Overview

Methodology: Floodwater Depth Estimation

Methodology: Probabilistic Flood Mapping

Case Study

Shoal Creek catchment

– Austin, TX

- Memorial Day flood
 - May, 25 2015 2-6 PM
 - 17 water rescues
 - 20.5 ft max. flood depths
- Sub-locations:
 - a: Downtown Austin
 - **b:** Dry Creek
- Validation
 - HEC-RAS hydraulic modeling results
 - FEMA 25 & 100 yrs maps

Case Study

Shoal Creek catchment

– Austin, TX

- Memorial Day flood
 - May, 25 2015 2-6 PM
 - 17 water rescues
 - 20.5 ft max. flood depths

Sub-locations:

- a: Downtown Austin
- **b:** Dry Creek

Validation

- HEC-RAS hydraulic modeling results
- FEMA 25 & 100 yrs maps

Preliminary Results: Floodwater Depth Estimations

Parts of Downtown Austin are underwater @foxaustin #txflood2015 #atxflood #ShoalCreek #AustinFloods

Tweeted video

Panorama image created from video

3D reconstruction of Google Street View

Preliminary Results: Floodwater Depth Estimations

Preliminary Results: Flood Extent Estimation

A: Downtown Austin

probabilistic extent

HEC-RAS modeled flood depth (ft)

16

85% of overlap with HEC-RAS modeled flood extent

B: Dry Creek *un-modeled / un-gauged creek

HRGA probabilistic extent

75 - 82% of overlap with FEMA flood extents

Conclusions & On-going Work

- Preliminary study was intended as an initial exploration of the feasibility of using VGI for real time probabilistic flood mapping
- Preliminary results demonstrated promising results which encourage the further development
 - Further validation of the proposed approaches
 - Estimation of water depths from social media photos/videos
 - Additional case study: Onion Creek, Austin, Texas
 - Assess the effects of current challenges and limitations
 - Spatial distribution/coverage of VGI data
 - Limitations associated with considering the different levels of confidence in the social media data
- Propose a methodology for the identification of critical areas from where VGI data is most needed

Acknowledgments

- National Flood Interoperability Experiment Summer Institute (NFIE)
 - Prof. David R. Maidment & Prof. Jim Nelson
- NFIE student collaborators
 - Fernando Salas, Cassandra Fagan, Caleb Buahnin, Nikhil Sangwan
- National Science Foundation Graduate Research Fellowship Program (GRFP)
- Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI)
 - National Science Foundation
- The National Water Center
- The National Oceanic and Atmospheric Administration
- The National Weather Service
- The University of Alabama

Probabilistic Flood Mapping Using Volunteered Geographical Information

Samuel Rivera¹

srivera2@illinois.edu

Collaborators: Marc Girons Lopez², Jan Seibert², Barbara Minsker³

¹ University of Illinois at Urbana-Champaign, IL
² Uppsala University, Sweden
³ Southern Methodist University, TX

UPPSALA UNIVERSITET